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ABSTRACT 

The lethal novel coronavirus disease 2019 (COVID-19) pandemic is affecting the health of the 

global population severely and a huge number of people may have to be screened in the future. There 

is a need for effective and reliable systems that perform automatic detection and mass screening of 

COVID-19 as a quick alternative diagnostic option to control its spread. A deep learning-based robust 

system is proposed to detect the COVID-19 using chest X-ray images. Infected patient’s chest X-ray 

images reveal numerous opacities (denser, confluent, and more profuse) in comparison to healthy lungs 

images which is used by a deep learning algorithm to generate a model to facilitate an accurate 

diagnostics for multi-class classification (COVID vs. normal vs. bacterial pneumonia vs. viral 

pneumonia) and binary classification (COVID-19 vs. non-COVID). COVID-19 positive images have 

been used for training and model performance assessment from several hospitals of India and also from 

countries like Australia, Belgium, Canada, China, Egypt, Germany, Iran, Israel, Italy, Korea, Spain, 

Taiwan, USA, and Vietnam. The data were divided into training, validation and test sets. The test 

accuracy of 97.11 ±2.71% was achieved for multi-class and 99.81 ± 0.00% for binary classification. 

The proposed model performs real-time disease detection in 0.137 seconds per image in a system 

equipped with a GPU device and can reduce the workload of radiologists by classifying thousands of 

images on a single click to generate a probabilistic report in real-time. 
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1. INTRODUCTION 

An eruption of novel coronavirus disease or COVID-19 (previously known as 2019-nCoV) started in China 

in December 2019. As of 16th September 2020, more than 29.5 million cases have been reported in more than 188 

countries and it has more than 930000 deaths [1]. COVID-19 caused by severe acute respiratory syndrome 

coronavirus-2 (SARS-CoV-2) is a disease that can be severe in patients with comorbidities and has a fatality rate 

of 2% [2]. There is an urgent need to take an effective step for the containment of COVID-19 by performing 

screening tests on a suspected fellow so that the infected person can receive immediate care and more specific 

treatment and quarantine of the patient can be ensured to limit the spread of the virus.  

The SARS-CoV-2 infection has a wide range of clinical manifestations ranging from asymptomatic infection 

and mild upper respiratory tract illness to severe viral pneumonia that may culminate in failure of the respiratory 

system and sometimes death [3]. Real-time reverse transcriptase-polymerase chain reaction (RT-PCR) tests are 

performed for the qualitative detection of nucleic acid from upper and lower respiratory tract specimens (i.e. nasal, 

lower respiratory tract aspirates, sputum, nasopharyngeal or oropharyngeal swabs, nasal aspirate) of infected 

person [4]. Performing RT-PCR testing for COVID-19 will most probably remain main detection method, 

however it is expensive, complicated, and time-consuming for countless patients with a lack of time and also other 



methods are required to detect infected patients. Because of the shortage of kits for RT-PCR and still also relatively 

high false-negative rate, the examination of chest X-rays (CXR) can be an alternative method of screening and 

early identification of lung involvement. It may be noted that the detection of lung involvement may predict a 

potentially life-threatening outcome in patients with COVID-19 [5] [6]. 

CXR images are non-invasive and X-rays of the chest are usually done in either anteroposterior (AP view) or 

Posterior anterior (PA view) of a suspected patient’s chest to generate cross-sectional images [7]. These X-ray 

images are examined by expert radiologists to find abnormal features suggestive of COVID-19 based on extent 

and type of lesions. Imaging features of the X-ray image of coronavirus affected persons varies as these depend 

on the stage of infection. The spectrum of radiological findings varies from normal (18% of cases) to ‘whiteout 

Lung’. The usual abnormality seen is bilateral peripheral sub-pleural ground glass opacities (GGO) and 

consolidations. “Crazy-paving” pattern and reversed halo sign may be seen [5] [6]. There may be a rapid 

progression in extent of lesion in 24 to 48 hours to multilobar to total lung involvement in severe disease [8]. With 

an increase in the number of patients with COVID-19 disease, the medical community may have to depend on 

portable CXR images because of its extensive accessibility and reduced infection controlling issues which 

presently limit the utilization of computed tomography (CT) services. With an increase in patient numbers, the 

workload on radiologists for this diagnostic process is also increasing and lack of availability of radiologists in 

certain places is also a challenge. Thus, there is an urgent requirement of a device or system which identifies the 

disease with an acceptable level of accuracy, even without a radiologist’s help to save time as well as to preserve 

the effort for the neediest in these time-constrained settings. Analysing medical imaging for disease classification 

is one of the highest priority research areas. With the help of an expert radiologists and based on the 

aforementioned features of CXR images, a computer-aided diagnostic system can be generated to correctly 

interpret COVID-19 cases from the input X-ray image.   

Several artificial intelligence systems using deep learning [9] as a pre-screening test for COVID-19 detection 

using CXR images are proposed in [10] [11]. Narin et al. [12] and Zhang et al. [13] used a similar approach with 

ResNet 50 and basic ResNet respectively, as a base neural network to classify normal and COVID-19 patients. A 

range of fine-tuned deep convolutional neural network (DCNN) based COVID-19 detection proposed by Khalid 

et al. [14] classify the result into normal and pneumonia. Khan et al [15] proposed coroNet for detection of 

COVID-19 in which CXR images are trained on Xception deep neural architecture for COVID-19 classification.  

Wang et al. [16] used X-ray images of four categories- COVID-19, Bacterial Pneumonia, Viral Pneumonia, and 

Normal. Fine-tuned SqueezeNet is proposed by Ferhat et al. [17] for COVID-19 diagnosis with Bayesian 

optimization additive giving the accuracy of 98.3% on CXR images. Ghosal et al. [18] used CXR images for 

computer-aided diagnostic of COVID-19 and normal patients. The CNN model is trained with 70 COVID-19 and 

other images of normal subjects and claimed 92% accuracy with that dataset. Shashank et al. [19] used public 

dataset of 181 COVID-19 Images, 364 healthy Images to detect COVID-19 using deep transfer learning. The 

model achieved the accuracy of 96.3% and loss of 0.151. Luca et al. [20] proposed a COVID-19 detection using 

deep learning on the dataset of 250 COVID-19 CXR images. Random forest classifier-based screening system to 

differentiate between COVID-19 patients and community-acquired pneumonia was implemented by Shi et al. [21] 

with 87.9% accuracy. Khobahi et al. [22] proposed a novel semi-supervised deep neural network architecture that 

can distinguish between healthy, non-COVID pneumonia, COVID-19 infection based on the CXR manifestation 

of these classes while taking very few numbers of parameters. It comprised of Task-Based Feature Extraction 

Network (TFEN), and COVID-19 Identification Network (CIN). Ozturk et al. [23] implemented 17 convolutional 

layers where each layer has different filters for each layer using DarkNet as a feature extractor layer. Abbas et al. 

[24] proposed a Decompose, Transfer, and Compose (DeTraC) method for COVID-19 classification. The author 

trained the chest computes tomography (CT) dataset with re-trained models on ImageNet and for identification 

use ResNet. For all previous works dataset for COVID-19 patients is too small or limited in size to make the 

training model robust, as compared in Table 10. The screening systems should be developed in the way to diagnose 

the CXR of the person and classify that image according to the probability of the diagnosed disease. It creates a 

need for a user-friendly diagnosis system where there is no need for trained manpower. The whole framework 

should be standalone and for practical reasons, there is often requirement not to depend on internet connectivity. 

The system should work fast to reduce workload and give results much faster than human experts. The dataset 

collected from multiple places and multiple conditions to train the deep learning model can be helpful to develop 

a diagnostic system which will be less prone to errors with universal acceptance.  

The main contribution of the work is to develop a deep learning-based system that can automatically identify 

the COVID-19 disease in CXR images. For this purpose, we collected so far the largest dataset of COVID-19 

patients and examined several different architectures where the most accurate was identified. The used dataset 

contains CXR database of 659 COVID-19, 1660 healthy and 4265 non-COVID (viral and bacterial pneumonia) 



samples which was also extended by 300 abnormal samples. Those samples were collected from three local 

hospitals of India and other countries like China, Italy, Australia, Iran, Spain, Germany, Vietnam, Israel Belgium, 

Canada, USA, Egypt, Korea and Taiwan making the dataset comprised of the large variety that may train the 

model for high robustness. The dataset was split into training, validation (5-fold cross-validation) and test datasets. 

Different approaches were examined including binary classification (COVID-19 or non-COVID), three class 

classification (COVID-19, pneumonia or non-COVID), and four-class classification model (COVID-19, normal, 

bacterial pneumonia, viral pneumonia). The results outperform the previous works in terms of accuracy, speed, 

and other parameters. 

Unlike many existing works that only consider a classification task on COVID-19 and non-COVID classes, 

the trained deep-learning network on comprehensive dataset can extract the best region in the X-Ray images to 

be further fed into the succeeding classifier network. This is unlike many existing works that naively feed the X-

ray image to the classification network. 

The variety of the sample images was collected from various pubic data sources and globally from several 

countries and extended from data collected from several hospitals. Thanks to this, we expect to achieve high 

comprehensiveness of the train model and robustness among variety of different imaging devices with various 

settings. We suppose we achieved higher acceptance among wide range of countries. The image test takes 

approximately 137 milliseconds per image (NVIDIA Quadro P600) thus making the model suitable for online 

screening of COVID-19 patients on any system equipped with modern GPU device. The source code and datasets 

will be released as an open-source and is free for download so anyone can benefit from the work or can also extend 

the work in future with other sources. The experiment is fully reproducible.  
The rest of the paper is structured as follows. Section II describes the datasets used in the experiment and how 

it was created. It also discusses clinical aspects of the problem and architectures used for detection of COVID-19 

cases including the methodology used for evaluation. Section III includes experiments and results for COVID-19 

detection and comparison to other works. Finally, section IV concludes the paper and discusses possibilities 

regarding future work. 

 
 

2. MATERIALS AND METHODOLOGY 

2.1 Dataset – Chest X-Ray Images 

For this study, datasets of CXR images are taken from two publicly available databases which were supplemented 

by data collected from hospitals in India. Indeed, public database geographical and X-ray image acquisition 

variance brings diversity and richness in the configuration and performance assessment phase. 

a) Dataset A is from the open-source repository [25] that has 237 COVID-19 CXR images from various 

parts of the world like Australia, Belgium, Canada, China, Egypt, Germany, Iran, Israel, Italy, Korea, 

Spain, Taiwan, USA and Vietnam on (12 May, 2020). This open repository contains a database of chest 

images of COVID-19, acute respiratory distress syndrome (ARDS), severe acute respiratory syndrome 

(SARS) 1, SARS 2, Middle East respiratory syndrome (MERS) patients.  

b) Dataset B consists of chest X-ray images of pneumonia infected and normal people of 5848 images from 

open source repository [26]. It is a combination of 1583 normal images, 2772 bacterial pneumonia images, 

and 1493 viral pneumonia CXR images. 

c) Dataset C1 is collected by the authors from 3 different hospitals from Uttar Pradesh and Rajasthan, India.  

 188 images (28 COVID-19, 83 non-COVID, 77 healthy images were collected from King George's 

Medical University (K.G.M.U.), Lucknow, Uttar Pradesh, India.  

 68 images of COVID-19 patients were collected from Uttar Pradesh University of Medical Sciences 

(U.P.U.M.S.), Saifai, Etawah, Uttar Pradesh, India.  

 543 X-ray images (326 COVID-19, 217 Non-COVID) from Government Medical College, Kota, 

Rajasthan, India.  

CXR images from all the databases are divided into training, validation, and test sets. Training and validation 

sets were split in ratio of 7:3. Test dataset contains 3112 samples for multi-class classification in 4 classes 

(194 COVID vs. 583 normal vs. 1772 bacterial pneumonia vs. 493 viral pneumonia cases) whereas 3042 samples 

for binary classification and COVID-19 detection (194 positive and 2848 non-COVID samples). Sample CXR 

images of COVID-19, healthy, viral pneumonia, bacterial pneumonia is shown in Fig. 1-4.  

1https://drive.google.com/drive/folders/1TILc4dLrpZdfuPUmvG0RzUvsMQ-PKgAj?usp=sharing () 

 



             
Fig. 1: Chest X-ray example images of a healthy person (Dataset B and C) 

             
Fig. 2: Chest X-ray example images of COVID-19 patient (Dataset A and C) 

             
Fig. 3: Chest X-ray example images of viral pneumonia patient (Dataset B) 

              

Fig. 4: Chest X-ray example images of Bacterial pneumonia patient (Dataset B) 

CXR images of COVID-19 are patched or with opacities which almost look the same as viral pneumonia 

images. At the initial stage of the COVID-19 infection, images do not indicate any kind of abnormalities.  Though 

with the increase of viruses the images gradually become unilateral. The lower zone and the mid-zone of the lung 

started transforming into patchy and smudged.  

2.2 Clinical perspective of X-ray images for COVID-19 Detection 

Bilateral and peripheral opacities (areas of hazy opacity) are the common trademark features of COVID-19 

affected patients X-ray report [27] with consolidations of the lungs (compressible lung tissue filled with fluid 

instead of air). The presence of air space opacities in more than one lobe is unlikely bacterial pneumonia since 

bacterial pneumonia is likely to be unilateral and involves a single lobe [28]. Other significant signs for COVID-

19 pneumonia are consolidation, peripheral, and diffused air space opacities. Initially, the researcher of COVID-

19 found the air-space disease likely to have a lower lung distribution and is most commonly bilateral and 

peripheral [29]. These kinds of peripheral lung opacities have also characteristics to be confluent, either patchy 

or, multifocal, and can be easily recognized on CXR images. Diffused lung opacities in COVID-19 patients have 

a similar pattern of CXR as other prevalent inflammatory or infectious processes such as in ARDS. Some other 

rare findings in COVID-19 affected patients are pneumothorax, lung cavitation, and pleural effusion (water in 

pleural spaces of the lung) [30]. It is mostly, if at all found at the later stage of the disease. Some of the COVID-

19 CXR features are depicted in Fig. 5. 

                                   
            (a)                                           (b)                                         (c)                                        (d) 

Fig. 5: Chest X-ray images of COVID-19 infected patients (a) diffuse ill-defined hazy opacities (black arrows) (b) diffuse lung disease and 

right pleural effusion (black arrows) (c) subtle ill-defined hazy opacities in right side (black arrows) (d) patchy peripheral left mid to lower 

lung opacities (black arrows) 

The conceptual schematic diagram of the proposed work is given in Fig. 6. Once the model is trained using a 

deep learning algorithm it can be utilized for rapid screening in health care centres. Mobile van-based screening 

can be performed in hot spot areas and public places. For pre-screening, a digital X-ray machine is required to 

get CXR. 



 
Fig. 6: Conceptual schematic representation of the proposed COVID-19 screening framework 

Thereafter, the image can be tested on any computing device which contains the proposed model. The model 

can classify the image in 0.137 seconds. It can classify thousands of images on a single click and generate a report. 

2.3 Methodology 

Deep learning (DL) is a part of machine learning which is utilized to solve complex problems with the state-

of-the-art performance on computer vision and image processing [31]. DL methods are widely used for medical 

imaging giving a high performance in segmentation, classification, and detection tasks including breast cancer 

detection, tumour detection and skin cancer detection [32]. The block diagram for dataset preparation, training 

and analysing using the deep learning model in the proposed work is depicted in Fig. 7. All the collected images 

from various sources of different countries were merged into one large dataset. The most of the collected samples 

were in Digital Imaging and Communications in Medicine (DICOM) format with extension “.dcm”. All digital 

X-ray files were converted in one common image format. The samples were then pre-processed where CXR 

images were cropped to remove redundant portions and resized to fit better to dimensions of used artificial neural 

networks. Augmentation was carried out which not only increases the dataset but gives robustness to the trained 

model and mitigates the occurrence of overfitting problems. Rotation, shear, scaling, flips, and shifts are few of 

the augmentation techniques which were used to prepare the model to increase the efficiency of test images in a 

different orientation. Dataset was labelled in different classes as per the opinion of the medical experts which are 

annotated and categorized accordingly. CXR images are annotated manually for proper training and bounding 

boxes made around the targeted area. The respective information about the labels and area is saved. After dividing 

the dataset of CXR in training, test, and validation set, deep learning models are trained for multiple iterations 

with the prepared dataset. The validation set is used for tuning the parameters and to escape overfitting of the 

training model. After sufficient training, the model adjusts its weights and the final trained model is tested on the 

new set of CXR images of various categories which were analysed for performance evaluation of the trained 

model. 

 
Fig. 7: Methodology of training and testing of the deep learning based COVID-19 detection algorithm 



For the image recognition and classification tasks, various architectures of convolutional neural networks or 

CNNs have proven their accuracy and are used widely. CNNs are commonly composed of multiple building 

blocks of layers consisting of convolution layer, activation layers, pooling layers, and fully connected (FC) layers 

which are designed to learn spatial hierarchies of features automatically and adaptively through backpropagation 

to perform vision task. The convolutional layer is an important part of the deep learning neural network, which 

extracts the common features from the input images. Input images are convolved with a filter or kernel to generate 

a convolved feature matrix using different strides. After convolution, the output is passed through an activation 

function (ReLU, Tanh, or Sigmoid). The activation layer is used to increase non-linearity without effecting its 

receptive field. Convolution layers are interleaved with pooling layers that is used to decrease the spatial size of 

the convolved feature matrix. It looks for a larger area of the input image matrix and takes aggregate information 

(maximum, average, and sum). FC layer is a dense layer which is the final learning phase of CNN architecture 

performing classification tasks. 

Training Model 

Architecture selection for backbone network plays an important role in feature extraction in object detection 

tasks. Stronger the backbone network stronger the detection speed and accuracy of the detection result. DarkNet-

53 is used as a backbone network which consists of 53 layers pre-trained on ImageNet [33]. Instead of random 

weights for initialization of training of the model, pre-trained weights using transfer learning is used in the proposed 

work which reduces the training time and make more efficient training. The DarkNet-53 network composed of 3 × 

3 and 1 × 1 filters with shortcut connections. To perform detection tasks, 53 additional layers are merged with 

DarkNet layers resulting in a total of 106 network layers. The considered YOLO-v3 based-architecture [34] for the 

proposed work with processed data to train with different CXR images of various classes, is shown in Fig. 8. This 

neural network architecture provides high speed of detection and desired precision. Due to multiscale search, it can 

detect large or as well as smaller objects. DarkNet-53 reaches the highest measured floating-point operations per 

second resulting in higher utilization of GPU by the structure of the network, which offers higher performance.  

 
Fig. 8: Architecture of proposed deep learning model for COVID-19 detection with processed dataset 

 

While training, input CXR images are converted into multi-level perceptions after passing through various 

CNN layers and these are flattened into a column vector and transferred into the FC layer to detect and classify 

different diseases. For training the proposed model with CXR images in a computationally efficient manner, an 

advanced form of ReLU activation function, leaky ReLU (LReLU) is used. LReLU activation function saves the 

value of gradients from getting saturated in case of constant negative bias alike in ReLU.  Instead of pruning the 

negative part to completely zero (as ReLU does), the negative part is multiplied by 𝛼 which is a small constant 

value and non-zero number, usually taken as 0.01. The output of the LReLU activation function used in the trained 

model can be represented as: 

                                                         𝑅(𝑥) =  {
𝑥,    𝑖𝑓 𝑥 > 0

𝛼𝑥,    𝑖𝑓  𝑥 ≤ 0
                                                                  (1) 

 In the proposed methodology, max-pooling is utilized together with convolutional layers for extraction of 

sharp features such as edges from input CXRs. In max-pooling, the maximum value from the rectified feature 

map is selected. For a CNN architecture, where 𝑠 is the pooling size and 𝑓 is pooling function, the output feature 

on jth local receptive for ith pooling layer is:     

                                                              𝑋𝑗 
𝑖 = 𝑓( 𝑋𝑗 

𝑖−1, 𝑠)                                                                             (2) 

Binary cross-entropy loss is used during training for the class predictions of input CXR images. The input 

CXR images are divided into N ✕ N grids. In the proposed work, predictions were made on three different scales 

as shown in Fig. 8. Thus, an input CXR image of 416 x 416 dimension is divided into grids of 13 x 13, 26 x 26 

and 52 x 52 for the respective stride values of 32, 16, and 8. The grid cells are responsible for detecting the objects 



if the centres of the objects lie in those grid cells. The grid cells predict bounding boxes and determine the 

confidence score associated with those boxes. The confidence score describes the confidence of the model that 

the object lies in the box and the accuracy of the box is predicted. Each grid in the input CXR image predicts B 

bounding boxes with confidence scores, as well as C class conditional probabilities. Confidence score formula is 

given in equation 3:  

                                                     𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 = 𝑝𝑟𝑒𝑑(𝑂𝑏𝑗) ∗ 𝐼𝑜𝑈𝑝𝑟𝑒𝑑
𝑡𝑟𝑢𝑡ℎ                                                      (3) 

where, 𝐼𝑜𝑈𝑝𝑟𝑒𝑑
𝑡𝑟𝑢𝑡ℎ represents the common value in between predicted and reference bounding box and 

  𝑝𝑟𝑒𝑑(𝑂𝑏𝑗) =  1, if the target is in the grids otherwise it would be 0. 
 

Detection of the targeted object for input CXR image in the proposed methodology is shown in Fig. 9. For a 

CXR image of size 416 × 416 pixels and stride of 32, the input image is divided into 13 × 13 cells. The cell which 

contains the centre of ground truth box is responsible for predicting the trained object class of CXR. The red grid 

cell in Fig. 9 is depicting the center of ground truth which responsible for detecting COVID-19 related features.  

 
Fig. 9:  Detection task through trained model in an image 

Detection takes place at three different scales like feature pyramid network (FPN) [35] which is done by 

downsampling the input image dimensions by 32, 16, and 8. Detection at three different scales makes the deep 

learning model detect the smallest objects. The last layer of the training network performs bounding box and class 

prediction for an input CXR image. Attributes of the bounding box contain co-ordinate points of the bounding 

box, objectness score, and target classes (COVID-19 and non-COVID). Objectness score is defined as the 

likelihood of containing the targeted object in a given bounding box. Objectness score is calculated by logistic 

regression for each bounding box and it should be one if ground truth object has more overlapping of bounding 

box prior as compared to others.  The best bounding box is selected out of multiple bounding boxes with the help 

of non-maximum suppression (NMS). It suppresses less likely bounding box and keep the best bounding box. 

NMS considers objectness score and intersection over union (IoU) parameters of the bounding box where IoU is 

the ratio between area of overlap and area of union of the predicted bounding box and true bounding box. NMS 

chooses the box with highest score for multiple iterations and eliminate higher overlapping bounding boxes after 

the computation of overlap with other boxes. The deep neural network computes four coordinate points for each 

bounding box, Sx, Sy, Sw, Sh. Then, corresponding predictions for respective x-coordinate, y-coordinate, width and 

height of bounding box represented by Bx, By, Bw, and Bh, respectively calculated as- 

                                                           Bx = σ(Sx) + COx                                                 (4) 

                                                           By = σ(Sy) + COy                                                        (5) 

                                                           Bw = Bpw eSw                                                                                  (6) 

                                                                     Bh = Bph eSh                                                                          (7) 

where, the cell is offset from the top left corner of the image by (COx, COy). Bpw and Bph are bounding box width and 

height prior, respectively. For training, the dataset sum of squared error loss is used. Logistic regression is used 

for predicting each class score and threshold for multiple labels for multi-labels prediction on CXR images. Objects 

which has higher class score value than the defined threshold value are assigned to the respective bounding box. 



For an input CXR image for testing the trained model predicts single or multiple detection results based on the 

values of threshold probability (0.5 in the proposed work), the best one is chosen as output to make screening 

processes rapid for a large number of testing samples.  

3. EXPERIMENTAL RESULTS AND DISCUSSION 

For performing all the training and testing of the model python language is used Intel Xenon processor with 

graphics processing unit (GPU). Considering the memory limitations of the server, the batch size of the training 

model is taken as sixteen. Other factors such as momentum to accelerate network training, an initial learning rate 

to affect the speed at which the algorithm reaches the optimal weights, weight decay to regularize the training 

model with complete software and hardware specifications for training different CXR images are given in Table 

1. 

 

TABLE 1 

PARAMETERS FOR TRAINING A DEEP LEARING MODEL 

Name Parameters 

Development Environment Anaconda, Jupyter Notebook, Tensorflow, Keras, OpenCV 

Processor Intel Xenon Gold 5218 CPU @ 2.30GHz, 2.29GHz 

Installed RAM 64 GB 

Operating System Windows 10, 64 bit 

Graphics NVIDIA, Quadro P600  

Graphics Memory 24 GB 

Programming Language Python 

Input Image Dataset 

Input dimension 416*416 

Batch Size 16 

Decay 0.0001 

Initial Learning Rate 0.001 (will reduced to 10-2 times after every 50000 steps) 

Momentum 0.9 

Epochs 250 

Optimization algorithm  Stochastic Gradient Descent (SGD) 

Experiments are performed on the dataset collected from different sources for binary classification (COVID-

19 vs. Non COVID) and multi-classification of diseases. The statistics of the number of images in the datasets are 

given in Table 2.  Apart from keeping images in the test set, the remaining dataset from all the sources is divided 

for training and validation in the ratio of 7:3 respectively. Test dataset was kept updating with new CXR images 

during the experiments while training and validation sets were kept constant. The deep learning model is trained 

with CXR images of different categories for several iterations until the loss gets saturated. Generated trained 

models are analysed with multiple images in test dataset to get overall performance. 

The following classes are subjected to classification:  

1. Bacterial Pneumonia  

2. Viral Pneumonia 

3. COVID-19  

4. Normal (Healthy) 

5. Non - COVID (Combination of Normal, Bacterial Pneumonia, Viral Pneumonia and Abnormal) 

TABLE 2 
CHEST X-RAY IMAGES IN DIFFERENT DATASETS 

Dataset 
COVID-19  

NON-COVID 

Total 
Normal 

(Healthy) 
Viral Pneumonia Bacterial Pneumonia 

Abnormal  
(Used only for Binary 

Classification) 

Train Valid Test Train Valid Test Train Valid Test Train Valid Test Train Valid Test 

Dataset A 166 71 0 0 0 0 0 0 0 0 0 0 0 0 0 237 

Dataset B 0 0 0 700 300 583 700 300 493 700 300 1772 0 0 0 5848 

Dataset C 159 69 194 54 23 0 0 0 0 0 0 0 161 69 70 799 

Total 325 140 194 754 323 583 700 300 493 700 300 1772 161 69 70 6884 
 

 



 Performance metrics used for the calculation of experiment is: 

                                                           𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 𝑜𝑟 𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                                         (8) 

                                             𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝑇𝑁+𝐹𝑃
                                                                          (9) 

                                             𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                                               (10) 

                                                            𝐹1 𝑆𝑐𝑜𝑟𝑒 =  2 ∗  
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
                                                                  (11) 

                                                            𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
                                                                   (12) 

where, true positive (TP) is the case where model correctly predicts the positive labelled image, false positive 

(FP) is the case where the model predicts as COVID-19 although the image is labelled as non-COVID-19. True 

negative (TN) is when the model correctly predicts negative image and false-negative (FN) is the case where the 

model incorrectly predicts a positive labelled image. Positive includes true and false positive images where 

negative is true negative and false negative images. The confusion matrix is used for measuring the performance 

of the machine learning classification problem. It is a combination of actual and predicted classes. Abnormal cases 

are those cases which do not belong to COVID-19 and normal category of CXR images. As abnormal images are 

limited in number in its category so these are considered only for binary (COVID-19 vs. non-COVID) 

classification and not considered for multi-classification in 3 and 4 classes. First, image data is analysed without 

augmentation and later the proposed methodology is tested with application of augmentation techniques. 

3.1 Binary Classification 

The combined database of datasets A, B, and C is grouped to perform binary classification i.e. COVID-19 or 

non-COVID, which contains 465 (237 images from dataset A and 228 from dataset C) images of COVID-19, 

3307 (3000 images from dataset B and 307 from dataset C) CXR of non-COVID. The dataset is divided in the 

ratio of 7:3 for images of different categories from the collected sources in respective classes. The confusion 

matrix is shown in Fig. 10. 

 
Fig. 10: Confusion matrix for Combined Dataset A, B, and C  

 

After having 5-fold cross validation, overall performance evaluation of detected outputs in binary 

classification is achieved as in Table 3. The values of TP, TN, FP and FN are averaged for 5-fold cross validation 

and that mean value is used to calculate those parameters. An accuracy in terms of confidence interval (95%) is 

achieved as 99.61 ± 0.00%, which shows very less false positives and false negatives cases.  

 
TABLE 3 

5-FOLD CROSS VALIDATION RESULT FOR 2-CLASS CLASSIFICATION: COVID-19 VS. NON-COVID ON DATASET (A +B +C) 

Samples of other category 
Accuracy 

(95% CI) 

Sensitivity 

(95% CI) 

Specificity 

(95% CI) 

Precision 

(95% CI) 

F1-Score 

(95% CI) 

Standard Deviation- COVID-19 and non-

COVID 
0.00 0.84 0.84 1.06 0.96 

Overall Results- COVID-19 and non-COVID  99.61 ± 0.00 99.17 ± 1.16 99.17± 1.16 99.05± 1.47 99.10 ± 1.33 

Standard Deviation - COVID-19 0.19 2.08 0.11 0.77 0.81 

Overall Results for COVID-19 99.61 ± 0.17 98.57 ± 1.83 99.76 ± 0.10 98.30 ± 0.68 98.42 ± 0.71 

 

Tests are performed on new 3112 number of test CXR images belonging to different classes for each of the 5 

models received after cross validation. Results of the binary classification on test images are shown in Table 4. 

The values of TP, TN, FP, and FN are averaged and other parameters values are calculated. Overall results are 

represented in terms of confidence interval 95%. 
 

 

 



TABLE 4 

TEST RESULT AFTER CROSS VALIDATION FOR 2-CLASS CLASSIFICATION: COVID-19 VS. NON-COVID ON DATASET 

(A +B +C) 

Class 

Samples 

of testing 

class 

Samples 

of other 

classes 

TP TN FP FN 
Accuracy 

(95% CI) 

Sensitivity 

(95% CI) 

Specificity 

(95% CI) 

Precision 

(95% CI) 

F1-Score 

(95% CI) 

COVID-19 194 2918 
188.

8 
2916.8 1.2 5.2 99.79 97.32 99.96 99.37 98.33 

Non-COVID 2918 194 
2916

.8 
188.8 5.2 1.2 99.79 99.96 97.32 99.82 99.89 

Standard Deviation-All Classes 0.00 1.87 1.87 0.32 1.11 

Overall Results- All classes 
99.79 ± 

0.00 
98.64 ± 2.59 

98.64 ± 
2.59 

99.6 ± 
0.44 

99.11 ± 
0.53 

Standard Deviation for COVID-19 0.12 2.04 0.02 0.22 1.00 

Overall Results for COVID-19 
99.79 ± 

0.10 
97.32 ± 1.79 

99.96 ± 
0.02 

99.37 ± 
0.20 

98.32 ± 
0.88 

 

The confusion matrix for binary classification using averaged values of results obtained from 5 different 

weights of trained model is shown in Fig. 11. 

 

 
Fig. 11: Confusion matrix for binary classification (COVID-19 vs non-COVID) on test dataset 

 

 The testing results for new images gives an accuracy of 99.79 ± 0.00% which is signifying the robustness of 

the proposed model. Hence this model can be utilized for performing detection and classification of COVID-19 

and non-COVID X-ray images of chest.  

 

 

3.2 Multi-class Classification 

The combined database i.e. Dataset A, B, and C which contains 465 images of COVID-19, 1077 normal CXR 

images, 1000 bacterial pneumonia, and 1000 viral pneumonia images are trained. In this set, CXR images of 77 

normal classified people and 228 COVID-19 diagnosed patient data from local hospitals are also involved along 

with images of the dataset A and B which is divided into training and validation set in the ratio of 7:3. The 

confusion matrix for multi-class classification is shown in Fig. 12. 

 

Fig. 12:  Confusion matrix of COVID-19 for Combined Dataset of A, B and C for multi-class classification 

 

To better examine the classification model generated by a deep learning algorithm, 5-fold cross-validation is 

used. The complete CXR image dataset is divided into five different parts and trained for five iterations. The 

model is trained with the four-fifth part and validated with remaining one-fifth part of CXR image dataset.  



After checking the datasets for all Test configurations and evaluating the validation performance, all datasets 

are chosen for cross-validation to get the actual performance of the model. Confidence interval (CI) is used to 

analyse the results which gives more information than point estimates. It measures the degree of certainty and 

uncertainty in a sampling method and gives the range of values which likely to contain the unknown parameter. 

95% confidence interval is most commonly used criteria for such estimations. For calculations of confidence 

intervals, mean and standard deviation for different folds of cross validation are calculated as in equation 13- 

                                                 𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙 =  𝑥  ±  
(z∗ σ)

√𝑁
                                                                              (13)                 

where, 𝑥 is the mean, σ is standard deviation and N is the sample size. The constant z =1.96 is confidence level 

value for 95% confidence interval.  

After performing 5-fold cross validation for overall performance evaluation for detected outputs in multi-

classification are achieved as in Table 5. The accuracy for 95% confidence interval is achieved as 94.79 ±3.81 % 

whereas the results concerning only the COVID-19 patients the achieved accuracy is for 99.70 ± 0.23%, which 

shows very less false positives and false negatives cases.  

  TABLE 5 

5-FOLD CROSS VALIDATION FOR 4-CLASS CLASSIFICATION: NORMAL VS. VIRAL PNEUMONIA VS. BACTERIAL 

PNEUMONIA VS. COVID-19 

Samples of other category 
Accuracy 

(95% CI) 

Sensitivity 

(95% CI) 

Specificity 

(95% CI) 

Precision 

(95% CI) 

F1-Score 

(95% CI) 

Standard Deviation- 4 classes 3.89 9.50 2.52 5.82 6.69 

Overall Results- 4 classes (95% CI) 94.79 ±3.81 90.82 ±9.31 96.48 ±2.47 91.35 ±5.70 90.88 ±6.56 

Standard Deviation- COVID-19 0.26 1.72 0.09 0.61 0.91 

Overall Results for COVID-19 99.70 ± 0.23 98.14 ± 1.51 99.91 ± 0.08 99.42 ± 0.53 98.77 ± 0.80 

 

Testing of trained models is done after different cross-validation folds to authenticate the performance. Trained 

model after each cross-validation has been tested on new test images and the mean values of different parameters 

for all 5 trained models are shown in Table 6.  
 

TABLE 6 

TEST RESULT AFTER CROSS VALIDATION FOR 4-CLASS CLASSIFICATION: NORMAL VS. VIRAL PNEUMONIA VS. 

BACTERIAL PNEUMONIA VS. COVID-19 ON DATASET (A +B +C) 

Class 

Samples 

of testing 

category 

Samples 

of other 

classes 

TP TN FP FN 
Accuracy 

(95% CI) 

Sensitivity 

(95% CI) 

Specificity 

(95% CI) 

Precision 

(95% CI) 

F1-Score 

(95% 

CI) 

COVID-19 194 2848 187.8 2845.8 2.2 6.2 99.72 96.80 99.92 98.85 97.81 

Normal 583 2459 556.4 2365 94 26.6 96.04 95.44 96.18 85.61 90.24 

Bacterial 

Pneumonia 
1772 1270 1004.2 1172.8 97.2 767.8 71.56 56.67 92.35 91.18 69.89 

Viral Pneumonia 493 2549 356.6 1773.8 743.6 136.4 70.03 72.33 70.45 32.43 44.77 

Standard Deviation- 4 classes 15.72 19.35 13.22 30.22 23.74 

Overall Results- 4 classes (95% CI) 84.34 ± 

15.41 

80.31 ± 

18.96 

89.72 ± 

12.95 

77.02 ± 

29.61 

75.68 ± 

23.27 

Standard Deviation- COVID-19 0.07 0.99 0.06 0.84 0.54 

Overall Results for COVID-19 99.72 ± 

0.06 

96.80 ± 

0.87 

99.92 ± 

0.05 

98.85 ± 

0.74 

97.81 ± 

0.47 

 

 The confusion matrix for multi-classification using averaged values of results obtained from 5 different 

weights of trained model is shown in Fig. 13. 

 

 
Fig. 13: Confusion matrix for multi-classification on test dataset 



If only the COVID-19 result is taken into consideration, the results in a confidence interval (95%) achieved as 

accuracy of 99.72 ± 0.06%, the sensitivity of 96.80 ± 0.87 %, specificity if 99.92 ± 0.05%, the precision value of 

98.85 ± 0.74% and F1-score value of 97.81 ± 0.47%. While considering all four classes the accuracy is achieved 

as 84.34 ±15.41% in terms of 95% CI. After analysing the testing results, classification of bacterial pneumonia 

and viral pneumonia is giving lower classification results when compared with other classes, as shown in Table 

4. Chaos occurs for a model to classify more precisely the CXR images of viral and bacterial pneumonia. So, the 

results of 4-class classification are interpreted in the form of 3 class classification where the results of bacterial 

and viral pneumonia are considered as a single class of pneumonia. After combining both pneumonia classes in 

one output class, results are significantly improved. Table 7 represents the test result after 5-fold cross-validation 

for performing three classifications. 
 

TABLE 7 
TEST RESULT AFTER CROSS VALIDATION FOR 3-CLASS CLASSIFICATION: NORMAL VS. COVID-19 VS. PNEUMONIA 

(VIRAL PNEUMONIA + BACTERIAL PNEUMONIA) ON DATASET (A +B +C) 

Class 

Samples 

of testing 

category 

Samples 

of other 

classes 

TP TN FP FN 
Accuracy 

(95% CI) 

Sensitivity 

(95% CI) 

Specificity 

(95% CI) 

Precision 

(95% CI) 

F1-Score 

(95% CI) 

COVID-19 194 2848 187.8 2845.8 2.2 6.2 99.72 96.80 99.92 98.84 97.81 

Normal 583 2459 556.4 2365 94 26.6 96.04 95.44 96.18 85.55 90.22 

Pneumonia 2265 777 2170.6 746 31 94.4 95.88 95.83 96.01 98.59 97.19 

Standard Deviation- All Classes 2.18 0.70 2.21 7.57 4.21 

Overall Results- All classes  
97.21 ± 

2.46 

96.02 ± 

0.80 

97.37 ± 

2.50 

94.35 ± 

8.57 

95.08 ± 

4.76 

 

The testing results show the increase in the overall classification results from 84.34 ±15.41% to 97.21 ± 2.46%, 

signifying high accuracy results. The values of other parameters are also substantially increased. Thus, this 

consideration can be used for 3 class classification for more surety in case of rapid large scale testing. 
 

3.3 Dataset Augmentation 

After performing the augmentation on the training and validation set with rotation (15 degree clockwise and 

anti-clockwise and scaling (half and double) of images, the dataset of 3772 CXR images is increased to 18860 

images, 5 times that of original dataset. After augmentation, CXR images are used for training which were tested 

on the test dataset of 3112 images for binary and 3042 images for multi-class classification. The results are shown 

in Table 8, where 97.11 ± 2.71% accuracy is achieved for multi-class (COVID-19 vs. Normal vs. Pneumonia) and 

99.81 ± 0.00% accuracy is achieved for multi-class (COVID-19 vs. non-COVID).  

 

TABLE 8 

TEST RESULTS FOR BINARY AND MULTI-CLASS CLASSIFICATION AFTER AUGMENTATION 

Classificat

ion 
Class 

Samples 

of 

testing 

category 

Samples of 

other 

categories 

TP TN FP FN 
Accuracy 

(%) 

Sensitivity 

(%) 

Specificity 

(%) 

Precision 

(%) 

F1-Score 

(%) 

Multi-class 

Covid-19 194 2848 191 2847 1 3 99.87 98.45 99.96 99.48 98.96 

Normal 583 2459 555 2359 100 28 95.79 95.20 95.93 84.73 89.66 

Pneumonia 2265 777 2164 746 31 101 95.66 95.54 96.01 98.59 97.04 

CI (95%) 97.11 ± 2.71 96.40± 2.02 97.30 ± 2.61 94.27 ± 9.36 95.22 ± 5.56 

Standard Deviation 2.39 1.79 2.30 8.27 4.91 

Binary 

(COVID-19 

vs. Non-

COVID) 

COVID-19 194 2918 191 2915 3 3 99.81 98.45 99.90 98.45 98.45 

Non-

COVID 
2918 194 2915 191 3 3 99.81 99.90 98.45 99.90 99.90 

CI (95%) 99.81 ± 0.00 99.18 ± 1.42 99.18 ±1.42 99.18 ± 1.42 99.18 ± 1.42 

Standard Deviation 0 1.03 1.03 1.03 1.03 

 

The performance comparison table for all kind of classification with and without augmentation is given in 

Table 9. The dataset augmentation enhanced the performance of the proposed methodology. Binary classification 

is giving the best output among other.  

 

 

 



TABLE 9 

COMPARISION OF THE OBTAINED TEST RESULTS USING THE PROPOSED METHODOLOGY 

Augmentation Classification Accuracy 

(%) 

Sensitivity 

(%) 

Specificity 

(%) 

Precision 

(%) 

F1-Score 

(%) 

Without 

Augmentation 

Multi-class (4 classes) 
84.30 ± 6.15 

84.34 ± 

15.41 
80.31 ± 18.96 89.72 ± 12.95 77.02 ± 29.61 

Multi-class (3 classes) 97.21 ± 2.46 96.02 ± 0.80 97.37 ± 2.50 94.35 ± 8.57 95.08 ± 4.76 

Binary (COVID-19 

vs. Non-COVID) 
99.79 ± 0.00 98.64 ± 2.59 98.64 ± 2.59 99.6 ± 0.44 99.11 ± 0.53 

With 

Augmentation 

Multi-class (3 classes) 97.11 ± 2.71 96.40± 2.02 97.30 ± 2.61 94.27 ± 9.36 95.22 ± 5.56 

Binary (COVID-19 
vs. Non-COVID) 

99.81 ± 0.00 99.18 ± 1.42 99.18 ±1.42 99.18 ± 1.42 99.18 ± 1.42 

 

All these generated models can be used in primary health care centres for performing the screening test on CXR 

images respectively. It can be utilized at places where there is a lack of availability of expert radiologists and also 

can assist them to make an accurate diagnosis whenever there are more patients. The model can be utilized as a 

real-time screening device that has an average detection time of 0.137 seconds per image for detection (NVIDIA 

Quadro P600) and its classification from input CXR images with dimensions of 416*416 pixels in a system with 

6 GB GPU. Some of the detected CXR images are shown in Fig. 14. 

   
Fig. 14. Prediction results of trained model on augmented dataset for multi-classification 

 

Table 10 compares different existing works for diagnosis of COVID-19 detection using CXR images which gives 

a reference of some similar existing and reported methods. The proposed method achieved good accuracy with 

low time complexity for detection of COVID-19 using CXR images, which is encouraging. 

TABLE 10 

COMPARISON WITH STATE-OF-THE-ART METHODS 

Work Dataset Methodology Classification 
Time (in 

seconds) 
Performance Metrics (%) 

[13] 
70 COVID-19, 1008 

Pneumonia 
ResNet-18 Binary class NA Sen=96 Spe=70.65 

[16] 
266 COVID-19, 8,066 

Normal, 5,538 Pneumonia 
COVID-Net 3-class NA Acc=93.3 Sen=91 

[15] 

284 Covid-19, 310 Normal, 

330 Bacterial Pneumonia, 327 

Viral Pneumonia Images 

CoroNet 
4-class 

NA 
Acc=89.6 Pre=97 F1-Score=98 

3-class Acc=99 Pre=95 F1-Score=95.6 

[23] 
127 COVID-19, 500 Normal, 

500 Pneumonia Images 

DarkCovidNet 

(CNN) 

Binary class, 

3-class 

< 1 

seconds 

2-classes: Acc=98.08 Spe=95.3 

Sen=95.13 Pre=98.03 F1-

Score=96.51  

3 classes: Acc=87.02 

Spe=92.18 Sen=85.35 

Pre=89.96 F1-Score=87.37 

[36] 
455 COVID-19, 2109 Non-

COVID Images 
MobileNet V2 Binary class NA 

Acc=99.18 Sen=97.36 

Spe=99.42 

[37] 

231 Covid19, 1583 Normal, 

2780 Bacterial Pneumonia, 

1493 Viral Pneumonia 

Inception 

ResNetV2 
3-class 0.1599 

Acc=92.18 Sen=92.11 

Spec=96.06 Pre=92.38 F1-

Score=92.07 

[38] 

224 Covid-19, 504 Normal, 

400 Bacteria Pneumonia, 314 

Viral Pneumonia 

MobileNet Binary class NA 
Acc=96.78 Sen=98.66 

Spe=96.46 

[39] 
180 COVID-19, 8851 

Normal, 6054 Pneumonia 

Concatenation 

of Xception and 

ResNet50V2 

3-class NA Acc=91.4 

[40] 

250 COVID-19, 3520 

Normal, 2753 Other 

Pulmonary Diseases 

VGG-16 Binary class 2.5  Acc=97 Sen=87 Spe=94 



[41] 

305 COVID-19, 1888 

Normal, 3085 Bacterial 

Pneumonia, 1798 Viral 

Pneumonia 

Stacked 

MultiResolutio

n CovXNet 

Binary class NA 

Acc=97.4 Spe=94.7 F1-

score=97.1 Recall=97.8 

Pre=96.3 AUC=96.9 

Proposed 

Approach 

659 COVID-19, 1660 

Normal, 1493 Viral 

Pneumonia, 2772 Bacterial 

Pneumonia, 300 Abnormal 

YOLO-v3, 

DarknNet-53 

Binary class 

0.137 

Acc= 99.81 ± 0.00, Sen=99.18 

Spe= 99.18 Precision = 99.18 

F1-score=99.18 

3-class 

Acc= 97.11± 2.71, Sen=96.40 

Spe= 97.30 Precision = 94.27  

F1-Score=95.22 

4-class 

Acc= 84.34 ± 15.41, 

Sen=80.31,  Spe= 89.72, 

Precision = 77.02,  F1-

Score=75.68 

 

Authors are aware that the datasets used in these various studies are not the same and that confrontation of the 

different methods should be done on the same database. Since there is no access to these data, this task remains 

difficult so dataset is made open for further research. 

 
 

3.4 Misclassified images  

On the analysis of the experimental results, it was found that most of the misclassified images were low-quality 

images or have some artefacts. Table 9 includes some of the images classified either as false-positives or false-

negatives and has a clinical input given by radiologists which may be a reason for misclassification.   

TABLE 11 

CLINICAL INPUT BY RADIOLOGIST FOR MISCLASSIFIED IMAGES 

IMAGES 
GROUND 

TRUTH 
PREDICTION CLINICAL INPUT 

 

COVID-19 Normal 

X-ray image of pediatric patient has less filed 
of lung as compare with mediastinum so the 

soft ware learning algorithm picks up as 

normal.  

 

COVID-19 Normal 
No explanation has to correlate with  chest 

auscultation findings 

 

Normal COVID-19 

X-ray image have an area of retro cardiac 
opacity and cardiac silhouettes deviation so the 

software learning algorithm may have picked 
up as COVID-19. 

 

Bacterial 
Pneumonia 

COVID-19 

X-ray image have hilar lymph nodes and 

peripheral opacity so the software learning 

algorithm may have picked up as COVID-19. 

 

COVID-19 Normal 
No explanation has to correlate with  chest 

auscultation findings 

 

In Table 9, three COVID-19 images were classified as normal whereas one bacterial image is misclassified as 

COVID-19, and one normal image is classified as COVID-19. Clinically it was found that since the lungs of 

children are not fully developed, it is difficult to predict the diseases using their CXR image. Short inputs from 

the clinical point of view of doctors are included in the Table as a possible reason of misclassification.  

4. CONCLUSION AND FUTURE WORK 

The 2019 novel coronavirus (COVID-19) pandemic appeared in Wuhan, China in December 2019 and has 

become a serious public health problem worldwide. In the proposed work a deep learning algorithm-based model 

is proposed for pre-screening of COVID-19 with CXR images. To make the system robust, the model is trained 



with a dataset of chest X-ray images collected from local hospitals of India and also from countries like Australia, 

Belgium, Canada, China, Egypt, Germany, Iran, Israel, Italy, Korea, Spain, Taiwan, USA, and Vietnam. The 

database is been manually processed and trained with a deep convolutional neural network. In order to detect 

COVID-19 at an early stage, this study uses transfer learning methods. The performance of the developed 

convolutional neural network model after 5 fold cross validation was giving the accuracy of 99.61 ± 0.11% for 

binary classification (is or is not COVID-19 disease)  using 1132 CXR image samples and accuracy of 94.79 ± 

1.59% for multi-class classification of COVID-19, normal, bacterial pneumonia, and viral pneumonia using 1063 

CXR image samples. The test accuracy for the augmented dataset is achieved as 97.11 ± 2.71% on 3112 CXR 

images samples for 3-class classification and 99.81 ± 0.00% for binary (COVID-19 vs. non-COVID) classification 

on 3042 different CXR image samples. It shows the proposed model has a high accuracy to identify COVID-19 

cases from other categories. Since in the current scenario identification of the COVID 19 is the most important 

task, the experimental results of the proposed model support the COVID 19 identification with very high accuracy. 

For the future, the model can be trained with images of more diseases to make an automatic prediction for those 

diseases. 
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Authors have carried out various experiment’s in many possible combinations and 

permutations – like Classification in only Dataset C, Dataset A+B, Combination of 

A+B+C, Various combinations like COVID vs. Non-COVID, COVID vs. Pneumonia 

(Bacterial + Virus Combined) vs. Healthy, COVID vs. Viral Pneumonia vs. 

Bacterial Pneumonia vs. Healthy – and the results are included in the Appendix.  
------------------------------------------------------------------------------------------------------------------------------------ 

 
1. Performance Evaluation for 4-Class Classification: Normal vs. Viral Pneumonia vs. Bacterial Pneumonia 

vs. COVID-19 on Dataset (A +B) 
 

Class 

Samples 

of 

validating 

class 

Samples 

of other 

classes 

TP TN FP FN 
Accuracy 

(%) 

Sensitivity 

(%) 

Specification 

(%) 

Precision 

(%) 

F1 

Score 

(%) 

COVID-19 71 900 71 897 3 0 99.69 100.00 99.67 95.95 97.93 

Normal 300 671 269 655 16 31 95.16 89.67 97.62 94.39 91.97 

Bacterial 

Pneumonia 
300 671 245 619 52 55 88.98 81.67 92.25 82.49 82.08 

Viral 

Pneumonia 
300 671 240 596 75 60 86.10 80.00 88.82 90.94 90.66 

Mean       92.48 87.83 94.59 95.95 97.93 

 

 

2. Performance Evaluation for 2 Class Classification: COVID-19 vs. Non-COVID on Dataset C 

Class 

Samples 

of 

validating 

class 

Samples 

of other 

classes 

TP TN FP FN 
Accuracy 

(%) 

Sensitivity 

(%) 

Specificity 

(%) 

Precision 

(%) 

F1 

Score 

(%) 

COVID-19 69 92 69 92 0 0 100.00 100.00 100.00 100.00 100.00 

Non-COVID 92 69 92 69 0 0 100.00 100.00 100.00 100.00 100.00 

Mean       100.00 100.00 100.00 100.00 100.00 
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3. Cross Validation for 4-Class Classification: Normal vs. Viral Pneumonia vs. Bacterial Pneumonia vs. 

COVID-19 on Dataset (A +B +C) 

Fold Class 

Samples of 

validating 

class 

Samples 

of other 

classes 

TP TN FP FN 
Accuracy 

(%) 

Sensitivity 

(%) 

Specificity 

(%) 

Precision 

(%) 

F1-

Score 

(%) 

1 

COVID-19 140 923 136 921 2 4 99.44 97.14 99.78 98.55 97.84 

Normal 323 740 291 707 33 32 93.89 90.09 95.54 89.81 89.95 

Bacterial Pneumonia 300 763 260 711 52 40 91.35 86.67 93.18 83.33 84.97 

Viral Pneumonia 300 763 233 707 56 67 88.43 77.67 92.66 80.62 79.12 

Mean  93.27 87.89 95.29 88.08 87.97 

2 

COVID-19 140 923 138 922 1 2 99.72 98.57 99.89 99.28 98.92 

Normal 323 740 321 706 34 2 96.61 99.38 95.41 90.42 94.69 

Bacterial Pneumonia 300 763 270 725 38 30 93.60 90.00 95.02 87.66 88.82 

Viral Pneumonia 300 763 238 741 22 62 92.10 79.33 97.12 91.54 85.00 

Mean  95.51 91.82 96.86 92.23 91.86 

3 

COVID-19 140 923 134 923 0 6 99.44 95.71 100.00 100.00 97.81 

Normal 323 740 322 696 44 1 95.77 99.69 94.05 87.98 93.47 

Bacterial Pneumonia 300 763 269 706 57 31 91.72 89.67 92.53 82.52 85.94 

Viral Pneumonia 300 763 216 742 21 84 90.12 72.00 97.25 91.14 80.45 

Mean  94.26 89.27 95.96 90.41 89.42 

4 

COVID-19 140 923 140 923 1 0 100.00 100.00 99.89 99.29 99.64 

Normal 323 740 323 699 41 0 96.14 100.00 94.46 88.74 94.03 

Bacterial Pneumonia 300 763 265 716 47 35 92.29 88.33 93.84 84.94 86.60 

Viral Pneumonia 300 763 228 745 18 72 91.53 76.00 97.64 92.68 83.52 

Mean  94.99 91.08 96.46 91.41 90.95 

5 

COVID-19 140 923 139 923 0 1 99.91 99.29 100.00 100.00 99.64 

Normal 323 740 323 715 25 0 97.65 100.00 96.62 92.82 96.27 

Bacterial Pneumonia 300 763 260 732 31 22 93.32 92.20 95.94 89.35 90.75 

Viral Pneumonia 300 763 233 754 9 42 92.85 84.73 98.82 96.28 90.14 

Mean  95.93 94.05 97.84 94.61 94.20 

Overall Results- All classes 94.79 90.82 96.48 91.35 90.88 

Overall Results for COVID-19 99.70 98.14 99.91 99.42 98.77 
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4. Test Result After Cross Validation for 4-Class Classification: Normal vs. Viral Pneumonia vs. Bacterial 

Pneumonia vs. COVID-19 on Dataset (A +B +C) 

Fold Class 

Samples 

of testing 

category 

Samples 

of other 

category 

TP TN FP FN 
Accuracy 

(%) 

Sensitivity 

(%) 

Specificity 

(%) 

Precision 

(%) 

F1-Score 

(%) 

1 

COVID-19 194 2848 190 2846 2 4 99.80 97.94 99.93 98.96 98.45 

Normal 583 2459 548 2379 80 35 96.22 94.00 96.75 87.26 90.50 

Bacterial Pneumonia 1772 1270 1013 1168 102 759 71.70 57.17 91.97 90.85 70.18 

Viral Pneumonia 493 2549 353 1795 754 140 70.61 71.60 70.42 31.89 44.13 

Mean   84.58 80.18 89.77 77.24 75.81 

2 

COVID-19 194 2848 188 2843 5 6 99.64 96.91 99.82 97.41 97.16 

Normal 583 2459 560 2390 69 23 96.98 96.05 97.19 89.03 92.41 

Bacterial Pneumonia 1772 1270 960 1178 92 812 70.28 54.18 92.76 91.25 67.99 

Viral Pneumonia 493 2549 371 1752 797 122 69.79 75.25 68.73 31.76 44.67 

Mean   84.17 80.60 89.63 77.36 75.56 

3 

COVID-19 194 2848 187 2847 1 7 99.74 96.39 99.96 99.47 97.91 

Normal 583 2459 556 2357 102 27 95.76 95.37 95.85 84.50 89.61 

Bacterial Pneumonia 1772 1270 1014 1163 107 758 71.56 57.22 91.57 90.45 70.10 

Viral Pneumonia 493 2549 345 1661 730 148 65.94 69.98 69.47 32.09 44.01 

Mean   83.25 79.74 89.22 76.63 75.40 

4 

COVID-19 194 2848 189 2846 2 5 99.77 97.42 99.93 98.95 98.18 

Normal 583 2459 558 2352 107 25 95.66 95.71 95.65 83.91 89.42 

Bacterial Pneumonia 1772 1270 1024 1170 100 748 72.12 57.79 92.13 91.10 70.72 

Viral Pneumonia 493 2549 352 1839 710 141 72.02 71.40 72.15 33.15 45.27 

Mean   84.89 80.58 89.96 76.78 75.90 

5 

COVID-19 194 2848 185 2847 1 9 99.67 95.36 99.96 99.46 97.37 

Normal 583 2459 560 2347 112 23 95.56 96.05 95.45 83.33 89.24 

Bacterial Pneumonia 1772 1270 1010 1185 85 762 72.16 57.00 93.31 92.24 70.46 

Viral Pneumonia 493 2549 362 1822 727 131 71.79 73.43 71.48 33.24 45.76 

Mean   84.80 80.46 90.05 77.07 75.71 

Overall Results- ALL classes 84.34 80.31 89.72 77.02 75.68 

Overall Results for COVID-19 99.72 96.8 99.92 98.85 97.81 

 5. Test Result After Cross Validation for 3-Class Classification: Normal vs. COVID-19 vs. Pneumonia 

(Viral Pneumonia + Bacterial Pneumonia) on Dataset (A +B +C) 

Fold Class 

Samples 

of testing 

category 

Samples 

of other 

category 

TP TN FP FN 
Accuracy 

(%) 

Sensitivity 

(%) 

Specificity 

(%) 

Precision 

(%) 

F1-Score 

(%) 

1 

COVID-19 194 2848 190 2846 2 4 99.80 97.94 99.93 98.96 98.45 

Normal 583 2459 548 2379 80 35 96.22 94.00 96.75 87.26 90.50 

Pneumonia 2265 777 2184 739 38 81 96.09 96.42 95.11 98.29 97.35 

Mean   97.37 96.12 97.26 94.84 95.43 

2 

COVID-19 194 2848 188 2843 5 6 99.64 96.91 99.82 97.41 97.16 

Normal 583 2459 560 2390 69 23 96.98 96.05 97.19 89.03 92.41 

Pneumonia 2265 777 2191 748 29 74 96.61 96.73 96.27 98.69 97.70 

Mean   97.74 96.56 97.76 95.04 95.76 

3 

COVID-19 194 2848 187 2847 1 7 99.74 96.39 99.96 99.47 97.91 

Normal 583 2459 556 2357 102 27 95.76 95.37 95.85 84.50 89.61 

Pneumonia 2265 777 2166 747 30 99 95.76 95.63 96.14 98.63 97.11 

Mean   97.09 95.80 97.32 94.20 94.87 

4 

COVID-19 194 2848 189 2846 2 5 99.77 97.42 99.93 98.95 98.18 

Normal 583 2459 558 2352 107 25 95.66 95.71 95.65 83.91 89.42 

Pneumonia 2265 777 2158 749 28 107 95.56 95.28 96.40 98.72 96.97 

Mean   97.00 96.14 97.32 93.86 94.86 

5 

COVID-19 194 2848 185 2847 1 9 99.67 95.36 99.96 99.46 97.37 

Normal 583 2459 560 2347 112 23 95.56 96.05 95.45 83.33 89.24 

Pneumonia 2265 777 2154 747 30 111 95.36 95.10 96.14 98.63 96.83 

Mean   96.87 95.51 97.18 93.81 94.48 

Overall Results- ALL classes 97.21 96.02 97.37 94.35 95.08 

Overall Results for COVID-19 99.72 96.8 99.92 98.85 97.81 
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6. Cross Validation Fold-1 Result for 2-Class Classification: COVID-19 vs. Non-COVID on Dataset (A +B 

+C) 

Fold Class 

Samples 

of 

validating 

class 

Samples 

of other 

classes 

TP TN FP FN 
Accuracy 

(%) 

Sensitivity 

(%) 

Specificity 

(%) 

Precision 

(%) 

F1-Score 

(%) 

1 

COVID-19 140 992 138 990 2 2 99.65 98.57 99.80 98.57 98.57 

Non-COVID 992 140 990 138 2 2 99.65 99.80 98.57 99.80 99.80 

Mean  99.65 99.18 99.18 99.18 99.18 

 

2 

COVID-19 140 992 140 988 4 0 99.65 100.00 99.60 97.22 98.59 

Non-COVID 992 140 988 140 0 4 99.65 99.60 100.00 100.00 99.80 

Mean       99.65 99.80 99.80 98.61 99.19 

 

3 

COVID-19 140 992 133 991 1 7 99.29 95.00 99.90 99.25 97.08 

Non-COVID 992 140 991 133 7 1 99.29 99.90 95.00 99.30 99.60 

Mean  99.29 97.45 97.45 99.28 98.34 

4 

COVID-19 140 992 140 990 2 0 99.82 100.00 99.80 98.59 99.29 

Non-COVID 992 140 990 140 0 2 99.82 99.80 100.00 100.00 99.90 

Mean   99.82 99.90 99.90 99.30 99.59 

5 

COVID-19 140 992 139 989 3 1 99.65 99.29 99.70 97.89 98.58 

Non-COVID 992 140 989 139 1 3 99.65 99.70 99.29 99.90 99.80 

Mean  99.65 99.49 99.49 98.89 99.19 

Overall Results- All classes 99.61 99.16 99.16 99.05 99.10 

Overall Results for COVID-19 99.61 98.57 99.76 98.30 98.42 

 

7. Test Result After Cross Validation for 2-Class Classification: COVID-19 vs. Non-COVID on Dataset (A 

+B +C) 

 

Fold Class 

Samples 

of testing 

category 

Samples 

of other 

category 

TP TN FP FN 
Accuracy 

(%) 

Sensitivity 

(%) 

Specificity 

(%) 

Precision 

(%) 

F1-Score 

(%) 

1 

COVID-19 194 2918 185 2917 1 9 99.68 95.36 99.97 99.46 97.37 

Non-COVID 2918 194 2917 185 9 1 99.68 99.97 95.36 99.69 99.83 

Mean   99.68 97.66 97.66 99.58 98.6 

2 

COVID-19 194 2918 191 2917 1 3 99.87 98.45 99.97 99.48 98.96 

Non-COVID 2918 194 2917 191 3 1 99.87 99.97 98.45 99.9 99.93 

Mean   99.87 99.21 99.21 99.69 99.45 

3 

COVID-19 194 2918 184 2917 1 10 99.65 94.85 99.97 99.46 97.1 

Non-COVID 2918 194 2917 184 10 1 99.65 99.97 94.85 99.66 99.81 

Mean   99.65 97.41 97.41 99.56 98.45 

4 

COVID-19 194 2918 192 2917 1 2 99.9 98.97 99.97 99.48 99.22 

Non-COVID 2918 194 2917 192 2 1 99.9 99.97 98.97 99.93 99.95 

Mean   99.9 99.47 99.47 99.71 99.59 

5 

COVID-19 194 2918 192 2916 2 2 99.87 98.97 99.93 98.97 98.97 

Non-COVID 2918 194 2916 192 2 2 99.87 99.93 98.97 99.93 99.93 

Mean   99.87 99.45 99.45 99.45 99.45 

Overall Results- ALL classes 99.79 98.64 98.64 99.6 99.11 

Overall Results for COVID-19 99.79 97.32 99.96 99.37 98.32 

 

Appendix: Authors have carried out various experiment’s in many possible 

combinations and permutations – like Classification in only Dataset C, Dataset A+B, 

Combination of A+B+C, Various combinations like COVID vs. Non-COVID, COVID 

vs. Pneumonia (Bacterial + Virus Combined) vs. Healthy, COVID vs. Viral 

Pneumonia vs. Bacterial Pneumonia vs. Healthy – and the results are included in the 

Appendix. 


