

#### TAKING COOPERATION FORWARD

Final conference Online / 9-06-2020

Dynamic models in the AIST catchment to assess effectiveness of NSWRMs in mitigating sand accumulation

FramWat | WasserCluster Lunz WCL | Damiano Baldan | Eva Feldbacher | Gabriele Weigelhofer | Thomas Hein



| Aist catchment<br>overview | Sand<br>accumulation<br>issue | Measures tested | Models<br>implemented |
|----------------------------|-------------------------------|-----------------|-----------------------|
|                            | Main results                  | Discussion      | Conclusions           |

#### TAKING COOPERATION FORWARD

# AIST CATCHMENT OVERVIEW



- Northern Austria
- Upper Danube
  catchment
- Feldaist: tillage, pasture
- Waldaist: forestry, pasture



## SAND ACCUMULATION ISSUE



Class 3





- Coarse sand to fine gravel
- Bedrock weathering, land use
- River bed aggradation
- Ecological impacts: Freshwater Pearl Mussel

# TYPES OF MEASURES TESTED



### Stakeholders interaction:

### 1) Sediment/water retention ponds

- Sediments trapping
- Water storage

### 2) Hydromorphological improvements

- Increase substrate heterogeneity
- Slow high flows

### 3) Vegetated filter strips

Sediments trapping







## **MODELS IMPLEMENTED**



- 1. SWAT: catchment hydrology and sediment generation
- 2. HEC-RAS: reach hydraulics
- 3. Random Forest: sand accumulation in stream

Models connection: Eco-Hydrological Modeling Cascade



TAKING COOPERATION FORWARD

## **MODELS IMPLEMENTED**



- 1. SWAT: catchment hydrology
- 2. HEC-RAS: reach hydraulics
- 3. Random Forest: sand accumulation

Sand accumulation model: predict sand risk class (50 m resolution)



# **MEASURES TESTED: SITING**



Sediments hotspots (SWAT):

- vegetated filter strips (88 % sediment production)
- sediment/water ponds (50 % sediment production)

Reaches in bad hydromorphological status: in-stream improvements



### MEASURES TESTED: ASSESSMENT STRATEGY



### Workflow:

- SWAT implementation
- Changes propagated
- Sand accumulation modelled (river network: 280 km)
- Scenario analysis
  - 1. Vegetated filter strips VFS
  - 2. Hydromorphological improvements HYDRO
  - 3. Sediment ponds P50
  - 4. Water ponds P300

Comparison with baseline: change in river network extent that is occupied by sand risk class

### EFFECTS OF MEASURES ON SAND ACCUMULATION





NOTE: Boxplots represent uncertainty in the forecast

#### **Observations:**

- HYDRO effective on class 3+
- P50, P300 effective on class 3
- VFS effective on class 0, 1, and 2



# FLEXIBILTIY OF THE MODELS



Effects at different spatial scales can be diagnosed:

- Changes at the whole catchment
- Changes in target reaches



# FLEXIBILTIY OF THE MODELS











(ING COOPERATION FORWARD

### CONCLUSIONS



### Dynamic modelling supports decision making:

- Catchment understanding (sediments hotspots)
- Effectiveness is assessed
- The measures ranking depends on the issue to tackle
- Trade-offs in measures choice are highlighted

## AIST CATCHMENT





 ${\small !} {\small !} {\tt !$ 

#### TAKING COOPERATION FORWARD