2021

PROSPECT2030

FINAL HANDBOOK sfide e opportunità

<u>WWW.INTERREG-CENTRAL.EU/</u> PROSPECT2030

INDICE

- 02 II progetto
- 03 Metodologia
- 04 Le nostre regioni target
 - 05 Eco Energy Land
 - 07 Friuli Venezia Giulia
 - 09 Mazovia
 - 12 Piemonte
 - 14 Saxony-Anhalt
 - 17 Southern Great Plain
 - 20 Split-Dalmazia
- 22 Raccomandazioni politiche
- 23 Mutuo apprendimento e formazione
- 25 Networking, eventi e video

IL PROGETTO

Il progetto PROSPECT2030 si è concentrato sul promuovere una governance di qualità presso l'amministrazione pubblica che funga da catalizzatore per l'adozione di azioni concrete volte alla transizione verso un'economia a basse emissioni di carbonio. Protagoniste devono essere le autorità pubbliche regionali e gli stakeholder locali: dobbiamo far prendere loro coscienza dell'urgente necessità di adottare misure che contrastino i cambiamenti climatici. I fondi pubblici ci sono, ma dobbiamo imparare a usarli meglio.

Un'analisi del contesto attuale con uno sguardo critico a quanto fatto nel periodo 2014-20 è stato il punto di partenza per promuovere un uso più efficiente dei fondi pubblici nel prossimo futuro. L'obiettivo è quello di favorire uno sviluppo regionale sostenibile e incrementare l'uso di energia da fonti rinnovabili.

Il partenariato ha visto il coinvolgimento di sette regioni europee: Eco Energyland (AT), Friuli Venezia Giulia (IT), Mazovia (PL), Piemonte (IT), Split-Dalmatia (HR), Saxony-Anhalt (DE), Southern Great Plain (HU).

FASI PRINCIPALI

- Compilazione di un Report Energetico Regionale
- Organizzazione di sessioni di apprendimento reciproco tra i partner e di attività di replica che coinvolgono partecipanti esterni in tutta Europa
- Preparazione di un pacchetto formativo interattivo online
- Redazione di raccomandazioni politiche sull'uso dei fondi pubblici per la mitigazione dei cambiamenti climatici e l'adattamento alle strategie macroregionali
- Redazione di sette Piani d'Azione Energetici Regionali

IN NUMERI

5 RACCOMANDAZIONI POLITICHE

PARTNER ESTERNI AL PROGETTO COINVOLTI

7 PIANI D'AZIONE ENERGETICI REGIONALI

1 PACCHETTO FORMATIVO ONLINE

METODOLOGIA

Lo sviluppo dei Piani d'Azione Energetici Regionali ha seguito una sequenza definita di fasi di lavoro: dalla stesura di una baseline regionale del consumo energetico, alla formulazione delle priorità energetiche regionali e allo sviluppo di scenari. Tutto ciò è stato possibile grazie al coordinamento dell'attività da parte del partner austriaco European Centre for Renewable Energy Güssing.

Di seguito una sintesi del metodo di approccio adottato:

- Raccolta di informazioni e dati rilevanti su consumo e fornitura di energia, dati demografici ed economici, infrastrutture, costi e prezzi, ecc.
- Tracciamento di una baseline regionale su consumo e generazione di energia, nonché delle emissioni di carbonio
- Analisi delle potenzialità e dei bisogni regionali in considerazione degli obiettivi e del quadro politico europeo e nazionale
- Formulazione di priorità energetiche regionali e relative misure per la transizione energetica
- Esecuzione di un'analisi SWOT ponderata per testare la disponibilità regionale per le misure di transizione e la stima degli sforzi e degli impatti correlati
- Definizione delle azioni da intraprendere per massimizzare l'impatto e minimizzare gli sforzi
- Assegnazione dei gruppi target, responsabilità e strumenti da utilizzare
- Sviluppo di scenari per la stima dell'impatto, basati su due componenti: PASSAGGIO da fonti energetiche fossili a fonti rinnovabili e CAMBIAMENTO del sistema energetico verso una maggiore efficienza, nuove tecnologie e accoppiamento settoriale
- Stima dei costi di investimento per il raggiungimento dei valori di scenario
- Stima delle emissioni di carbonio derivanti dalle misure considerate negli scenari
- Delineare le sfide, le strozzature e le lacune da prendere in considerazione, come rilevate nel corso dello sviluppo dello scenario
- Considerazione dell'impatto previsto sull'economia regionale e sui relativi modelli di finanziamento e di business.

LE NOSTRE REGIONI TARGET

ECO ENERGY LAND

Eco-Energy-Land (EEL) è un'associazione di 19 comuni che fanno parte della regione del Burgenland nell'Austria orientale, vicino al confine con l'Ungheria. EEL è un'area periferica, a bassa industrializzazione, con una forte attenzione all'agricoltura e un trend in diminuzione della popolazione, tuttavia nel programma del Fondo nazionale per il clima e l'energia si inserisce come regione modello per clima e energia. Per quanto riguarda le infrastrutture, le reti elettriche e le reti stradali sono ben sviluppate, ma non esiste una rete del gas e una rete ferroviaria in loco.

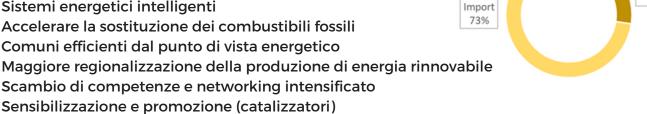
PIANO D'AZIONE

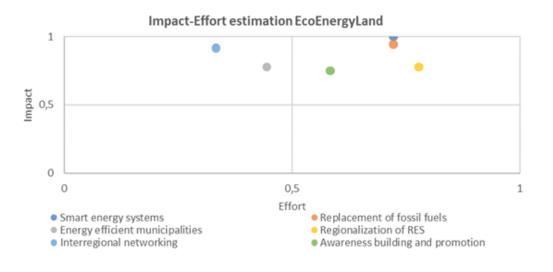
BASE DI RIFERIMENTO DEL SISTEMA ENERGETICO

- Consumo finale pro capite: 44 MWh/a
- Consumo primario pro capite: 59 MWh/a
- Emissioni di CO2 pro capite: 10 t/a
- Produzione interna elettricità: 42% del consumo finale
- Produzione interna di calore: 35% del consumo finale
- Fornitura interna settore trasporti: 0% del consumo finale

Share of renewables in consumption - baseline Renewable 38% Non renewable 62%

Energy supply baseline


PRIORITÀ ENERGETICHE E AZIONI STRATEGICHE


Sistemi energetici intelligenti

Accelerare la sostituzione dei combustibili fossili Comuni efficienti dal punto di vista energetico

Maggiore regionalizzazione della produzione di energia rinnovabile

Scambio di competenze e networking intensificato

Internal

generation 27%

OBIETTIVI AL 2030

- Consumo primario: -10,5%
- Consumo finale: -5,7%
- Emissioni di CO2: -36,5%
- Quota di rinnovabili: 38% -> 68%
- Rifornimento energetico (produzione interna): 27% -> 47%

Funding Research and development

By6

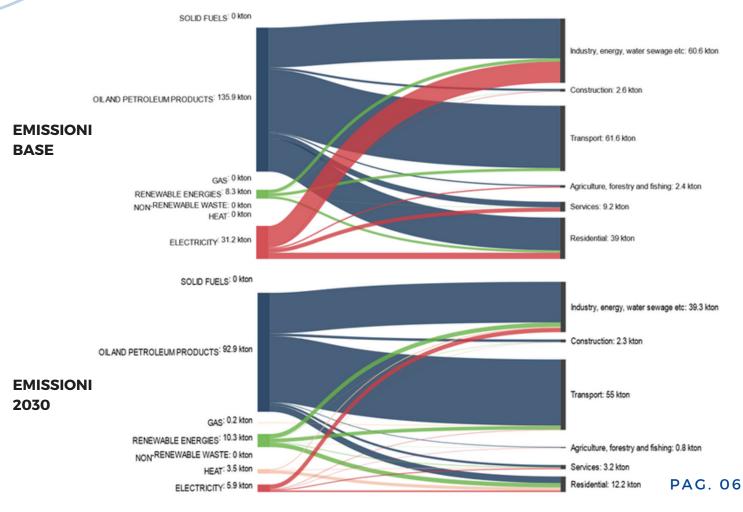
Ituzione

Residents

Investimenti necessari nella generazione di energia:

Sostituzione degli impianti a gasolio
Riqualificazione termica del patrimonio edilizio
Mobilità sostenibile
Produzione di energia rinnovabile
Smart grid: gestione dell'energia
TOT. INVESTIMENTI

69 milioni € 72 milioni € 86 milioni € 159 milioni € 7 milioni €


SFIDE E OPPORTUNITÀ

OPPORTUNITÀ

- Le energie rinnovabili e l'azione per il clima fanno già parte dell'identità regionale
- Il quadro di finanziamento è ben elaborato e accessibile
- La regione è in prima linea per quanto riguarda le comunità energetiche e i sistemi energetici intelligenti

SFIDE

- Intensificazione delle relative informazioni, consulenza e servizi di supporto
- Accelerazione dell'ammodernamento tecnico del patrimonio edilizio
- L'elettrificazione dei settori end-use richiede grandi sforzi e investimenti

FRIULI VENEZIA GIULIA

Il Friuli Venezia Giulia fa parte dell'Italia nord-orientale: qui il clima varia dall'alpino al mediterraneo.
Ha un'economia ben sviluppata basata su industria, servizi e turismo; la popolazione è stabile nelle aree urbanizzate e in calo nelle valli alpine. Il PIL è superiore alla media del Paese ma con una crescita più lenta. In quanto Regione Autonoma, gode di una certa autonomia sui temi energetici ed è un crocevia strategico per le infrastrutture (porti, oleodotti, alta velocità).

Final Energy Demand by Sector Agri/forestry/fisheries Industry Construction Transport Services

Share of sectors in regional CO2 emissions from energy consumption

■ Residential

Agriculture

■ Construction

Industry

■ Transport

■ Residential

Services

PIANO D'AZIONE

BASE DI RIFERIMENTO DEL SISTEMA ENERGETICO

- Consumo finale pro capite: 31,5 MWh/a
- Emissioni di CO2 pro capite: 9,7 t/a
- Quota di rinnovabili nel consumo finale: 21%
- Produzione interna elettricità: 112% del consumo fin.
- Produzione interna di calore: 0,01% del consumo fin.
- Fornitura interna settore trasporti: 0% del consumo finale

PRIORITÀ ENERGETICHE E AZIONI STRATEGICHE

Edilizia Sostenibile:

Ammodernamento efficiente dal punto di vista energetico

Eco-costruzioni

Integrazione RES su piccola scala

Gestione della domanda

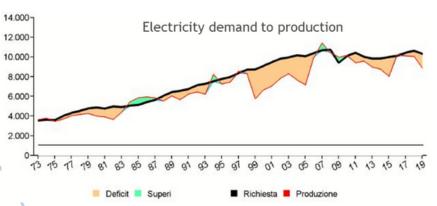
Bioenergie:

Gestione forestale

Teleriscaldamento da biomassa

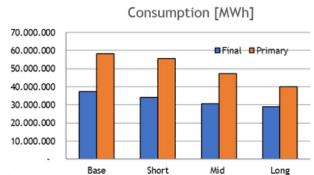
Impianti a biogas

Mobilità sostenibile:

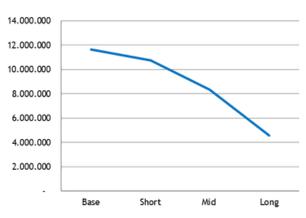

Trasporto terrestre Trasporto marittimo Carburanti alternativi

Efficienza industriale:

Recupero del calore di scarto Idrogeno nell'industria Soluzioni ibride


Smart Grid:

Comunità energetiche
Sistemi di monitoraggio e risposta alla domanda
Integrazione FER


OBIETTIVI 2030

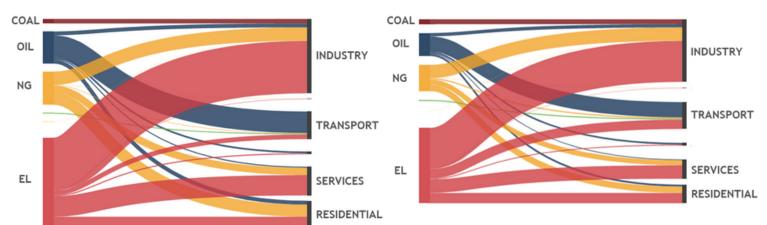
- Consumo primario: -18,4%
- Consumo finale: -17,5%
- Emissioni di CO2: -28,5%
- Quota di rinnovabili: 21% -> 36%
- Rifornimento energetico (generazione interna): 27% -> 36%

Investimenti necessari nella generazione di energia:

MID TERM		Feed-in			
IVIID TERIVI	Investment (€)	remuneration (€)	incentive (€)		
PV	1.942.959.098	80.313.987	284.205.063		
BIOGAS	129.478.388	15.348.331	0		
SOLID BIOMAS	503.893.411	101.960.726	0		
HYDRO	92.832.616	6.512.215	0		
HP & ST	13.714.710	0	8.856.433		
total	2.682.878.223	204.135.259	293.061.496		

SFIDE E OPPORTUNITÀ

OPPORTUNITÀ


- Sviluppare nuove sinergie e guidare l'innovazione
- Opportunità per le industrie regionali e le catene di approvvigionamento
- Energia conveniente e redditizia

SFIDE

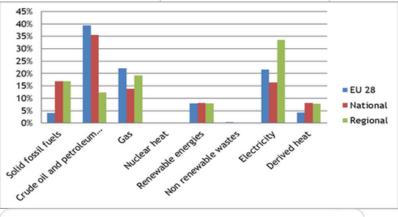
- Settore industria e trasporti
- Cooperazione intersettoriale
- Uso efficiente dei fondi pubblici per sfruttare gli investimenti privati
- Coinvolgimento del settore privato

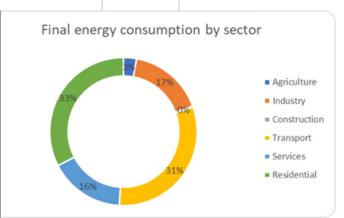
EMISSIONI BASE

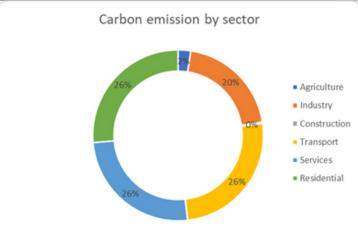
EMISSIONI 2030

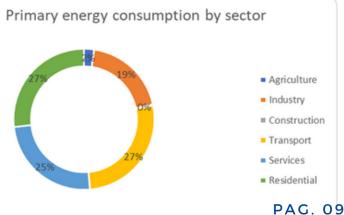
MAZOVIA

La Mazovia è il più grande voivodato della Polonia, primo in termini di popolazione (5,4 milioni di persone). La popolazione urbana costituisce circa il 64% del totale e il voivodato ha il tasso di disoccupazione più basso e un livello di reddito relativamente alto. La regione ha un grosso problema con l'accesso ai dati energetici regionali, disponibili per lo più a livello nazionale e solo generici a livello regionale.


La Mazovia è uno dei maggiori consumatori di elettricità in Polonia, prodotta principalmente dal carbone: molte città affrontano enormi problemi di inquinamento atmosferico e smog. Le sfide per la regione sono principalmente la riduzione dell'inquinamento e gli investimenti in energia sostenibile.


PIANO D'AZIONE


BASE DI RIFERIMENTO DEL SISTEMA ENERGETICO


Total regional pool

Final demand (MWh)	Internal supply (MWh)	Import (MWh)	Export (MWh)	Renewable (MWh)	Share of renewable	Emission (t/year)
132 791 687	91 756 299	41 035 389	152 374 175	15 677 039	11,8%	51 217 126

PRIORITÀ ENERGETICHE E AZIONI STRATEGICHE

Pianificazione energetica centralizzata:

- Organizzazione e sistematizzazione dei dati energetici
- Sviluppo del piano SECAP
- Supporto finanziario e tecnico ai comuni

Efficienza energetica negli edifici:

- Monitoraggio energetico obbligatorio in tutti gli edifici
- Riqualificazione energetica di edifici pubblici e privati
- Promozione delle fonti rinnovabili integrate negli edifici

Risorse energetiche rinnovabili:

- Sviluppo dell'energia eolica
- Sviluppo del fotovoltaico

Mobilità sostenibile:

- Elettrificazione del settore della mobilità
- L'elettromobilità nel trasporto pubblico

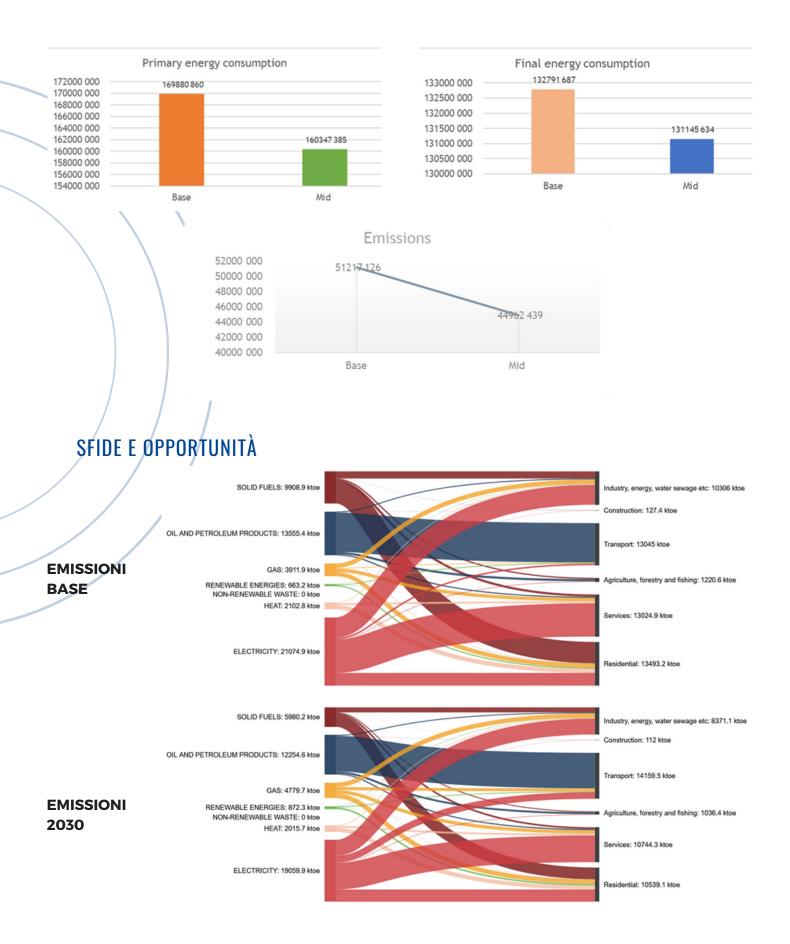
Reti elettriche:

 Riqualificazione della rete di distribuzione dell'energia elettrica e integrazione delle FER

Reti di teleriscaldamento:

- Potenziamento e ottimizzazione dell'utilizzo del teleriscaldamento
- Sviluppo della geotermia
- Gassificazione di impianti termici

OBIETTIVI 2030


- Il 60% dei comuni aderisce al Patto dei Sindaci e sviluppa PAESC con l'impegno di ridurre del 40% le emissioni di CO2
- Sostituzione di tutti i dispositivi di riscaldamento fino al 2030 per soddisfare i requisiti di efficienza energetica
- Termo-modernizzazione di tutti gli edifici pubblici fino al 2030
- Almeno il 14% di FER nei trasporti inclusa l'elettromobilità
- Almeno il 60% di edifici collegati a reti di teleriscaldamento
- Almeno il 30% di quota di FER nel riscaldamento
- Riqualificazione della rete di trasmissione, riduzione delle perdite di trasmissione
- Almeno il 60% di quota di FER nell'elettricità

Investimenti necessari nella generazione di energia:

TOT. INVESTIMENTI	2306 milioni €
Reti di teleriscaldamento	444 milioni €
Reti elettriche	1500 milioni €
Mobilità sostenibile	222 milioni €
Efficienza energetica negli edifici	133 milioni €
Pianificazione energetica	7 milioni €

Total regional pool

Final demand	Internal	Import	Export	Renewable	Share of	Emission
(MWh)	supply (MWh)	(MWh)	(MWh)	(MWh)	renewable	(t/year)
131 145 634	90 686 644	40 458 990	117 040 527	38 277 836	29,2	44 962 439

- Modifiche alla normativa relativa alle fonti di energia rinnovabile;
- Politica energetica e spaziale nei comuni;
- Cattive condizioni delle reti elettriche;
- Conflitti sociali
- ...La COOPERAZIONE è centrale!

PIEMONTE

Il Piemonte è la seconda regione italiana per grandezza e la quinta per popolazione, con circa 4,4 milioni di abitanti e un alto livello di reddito pro-capite. Si trova a nord-ovest, posizione che la rende una regione terminale dal punto di vista delle reti nazionali dell'energia elettrica e del gas. Allo stesso tempo, però, è anche corridoio di transito per le principali reti (sia energetiche che di trasporto) verso l'Europa occidentale e centrale.

Il Piemonte, insieme al resto della pianura padana, è storicamente sede dei poli produttivi italiani. La regione è strettamente legata al settore manifatturiero industriale ma, mentre in passato l'economia regionale era basata sull'industria automobilistica, oggi è più incentrata sui servizi, l'industria alimentare e il turismo.

Regional Electricity Generation

PIANO D'AZIONE

BASE DI RIFERIMENTO DEL SISTEMA ENERGETICO

- Consumo finale pro capite: 29 MWh/a
- Emissioni di CO2 pro capite: 6,1 t/a
- Quota di rinnovabili nel consumo finale: 17%
- Quota di rinnovabili nella generazione elettrica: 40% e 60% da gas naturale
- Produzione interna di elettricità: più del 100% del consumo finale (~ 25 TWh)
- Produzione interna di calore: ~ 4% del consumo finale
- Fornitura interna settore trasporti: 0% del consumo finale

PRIORITÀ ENERGETICHE E AZIONI STRATEGICHE

Coordinazione territoriale:

- Promuovere la pratica di gestione dell'energia a livello comunale
- Agevolazione dei servizi di Assistenza allo Sviluppo Progetti nella Regione
- Osservatorio sui dati energetici

Edifici sostenibili:

• Promozione di profonde ristrutturazioni negli edifici (pubblici e privati) e strutture

Efficienza industriale:

• Recupero del calore di scarto

Generazione elettrica:

- Individuazione delle aree con potenzialità per le FER
- Riduzione e progressivo abbandono della produzione di energia elettrica da Gas Naturale

Bio energie:

- Conversione degli impianti a biogas alla produzione di biometano
- Supportare la ricerca nella filiera dell'idrogeno

Mobilità sostenibile:

- Elettrificazione
- Passaggio alla mobilità sostenibile
- Combustibili alternativi (biometano da produzione indigena)

Reti intelligenti:

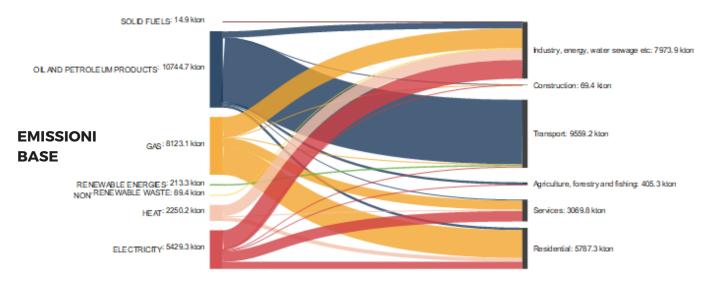
- Comunità energetiche
- Pianificazione strategica per teleriscaldamento
- Coordinamento delle procedure di concessione della rete gas

OBIETTIVI 2030

- Potenza fotovoltaica x6
- -40% del gas naturale nella produzione di energia elettrica
- 40% di riduzione del fabbisogno energetico Residenziale (res) e Terziario (ter).
- Eliminazione graduale dal fossile per il riscaldamento res/ter
- Spostamento del 55% del fabbisogno di gas naturale nel riscaldamento a termopompa/rinnovabile/sistema di teleriscaldamento
- Spostamento del 40% del fabbisogno di carburanti per autotrazione verso l'elettricità
- 50% di conversione del biogas in impianti di biometano

-55% di emissioni rispetto al 1990 nel 2030 30% dei fabbisogni energetici finale rispetto al 2007 40% di riduzione del consumo energetico primario rispetto al 2007

15.000 €/pro capite

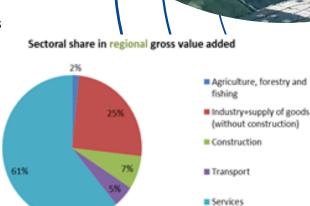

SFIDE E OPPORTUNITÀ

OPPORTUNITÀ

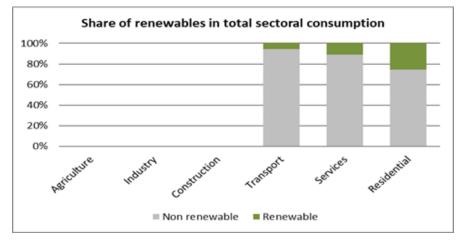
- Sviluppare nuove sinergie e guidare l'innovazione
- Opportunità per le industrie regionali e le catene di approvvigionamento
- Energia conveniente e redditizia

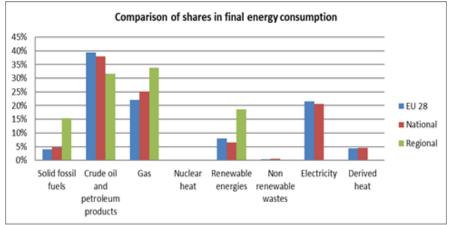
SFIDE

 …obiettivi molto ambiziosi!



SAXONY-ANHALT


Il land Saxony-Anhalt si trova nell'est della Germania e ha 2.2 milioni di abitanti, con una tendenza in diminuzione della popolazione. Il settore dei servizi dà il maggiore apporto all'economia del territorio. Le infrastrutture sono ben sviluppate: per trasportare persone e beni si usano corsi d'acqua, autostrade e ferrovie.

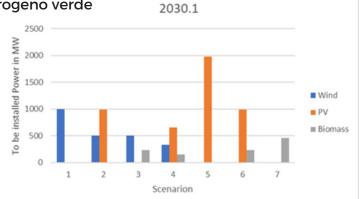

L'infrastruttura energetica consiste in reti elettriche, gas naturale (condutture e caverne) e teleriscaldamento. La rete elettrica verrà ulteriormente sviluppata per integrare meglio la l'energia elettrica generata da fonti di energia rinnovabile che giocano un ruolo importante nel Saxony-Anhalt: circa il 55% dell'elettricità, infatti, è prodotta da rinnovabili.

PIANO D'AZIONE

BASE DI RIFERIMENTO DEL SISTEMA ENERGETICO

PRIORITÀ ENERGETICHE E AZIONI STRATEGICHE

Migliore integrazione della popolazione locale nei progetti

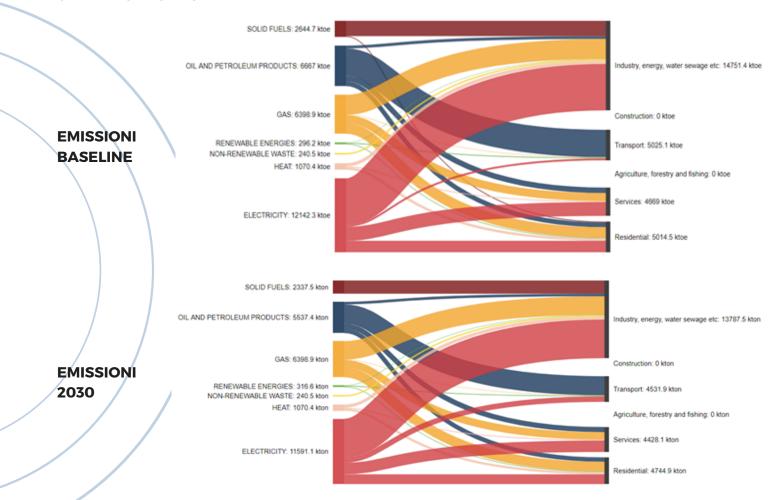

Miglior sostegno agli incentivi per il progetto invece della burocrazia

Elettrolizzatore da 1 GW per la produzione di idrogeno verde

Ampliamento della rete di idrogeno esistente

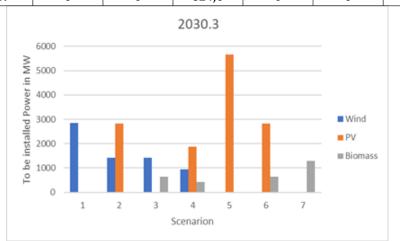
OBIETTIVI 2030

- Spegnere la centrale a carbone di Düben (67 MW)
- Elettrificazione del calore non prodotto dalla centrale a carbone
- Elettrificazione settore trasporti (25%)


	Missing electricity generation in MWh	Missing thermal generation in MWh	New electricity demand for driving electric power in MWh	New electricity demand for suppling 25% of mobility in MWh	Additional amount of electricity to be supplied in MWh
Coal power plant Deuben	427.980				
Coal for heating room purposes in residential and service sectors		320.278			
Electric driven heat pump			91.508		
Electric mobility				1.214.630	
Electricity to be generated by RES based technologies					1.734.118

Investimenti necessari nella generazione di energia:

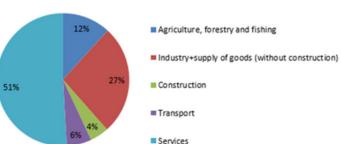
Scenario	Investment for wind farms in M€	Investment for photovoltaic plans in M€	Investment for biomass fired plants in M€	Total investment in M€	Ranking
2030.1.	700	0	0	700	1
2030.1.	350	1.140,8	0	1.491	3
2030.1	350	0	841,4	1191,9	2
2030.1.	231,3	1150,8	555,4	1.539,6	4
2030.1.	0	2.281	0	2.281	7
2030.1.	0	1.140,8	841,4	1.982	6
2030.1.	0	0	1.682,9	1682,9	5


Scenario	CO2 emissions calculated in ktCO2	Reduction in ktCO2	Reduction in %
Scenario 2030.1	25.322	24.199	48,9%
Scenario 2030.2	27.824	21.697	43,8%

SFIDE E OPPORTUNITÀ

Per raggiungere una riduzione di CO2 del -55%, è necessaria un'elettrificazione del settore dei trasporti del 91%.

		Expansion in S	%	Expansion in GW			
scenario	Wind PV plants farms		Biomass fired plants	Wind farms	PV plants	Biomass fired plants	
2030.3.	56,2,6	0	0	2852,8	0	0	
2030.3.	28,0	125,4	0	1426,4	2826,6	0	
2030.3	28,0	0	162	1426,4	0	648	
2030.3.	18,5	82,7	106,9	941,4	1865,6	427,7	
2030.3.	0	250,8	0	0	5653,4	0	
2030.3.	0	125,4	162,0	0	2826,7	648	
2030.3.	0	0	324,0	0	0	1296	

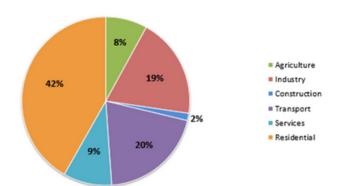

SOUTHERN GREAT PLAIN

Southern Great Plain (SGP) è una delle sette regioni statistiche (livello NUTS2) in Ungheria, situata nella parte sudsud est del Paese. La regione è caratterizzata in maggioranza da paesaggi agricoli e aree rurali, con la rete di insediamenti più sparsa di tutto il paese. Tuttavia, con un totale di 47 aree urbane, è una delle zone più popolate dell'Ungheria. Svolge anche un ruolo di porta di accesso ai Balcani, poiché la autostrada ME a M/3 collegano Sorbia a Domania con

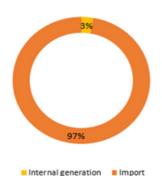
le autostrade M5 e M43 collegano Serbia e Romania con Budapest e l'Europa occidentale.

L'Ungheria dipende pesantemente dall'importazione di combustibili fossili, in particolare di petrolio e gas naturale: il 48% del consumo finale di elettricità si basa sull'importazione.

Sectoral share in regional gross value added



PIANO D'AZIONE


BASE DI RIFERIMENTO DEL SISTEMA ENERGETICO

Baseline overview 2016	Final energy demand (MWh)	Share	Primary energy demand (MWh)	Share	Carbon emission (t/a)	Share
Agriculture, forestry and fishing	1 766 162	8,0%	2 193 179	7,6%	413 297	9,2%
Industry (without construction), energy, water sewage etc	4 253 286	19,3%	6 457 917	22,3%	984 691	21,9%
Construction	305 766	1,4%	380 780	1,3%	76 344	1,7%
Transport	4 436 461	20,1%	4 997 996	17,3%	1 159 220	25,8%
Services	2 059 105	9,4%	3 059 722	10,6%	447 671	9,9%
Residential	9 199 101	41,8%	11 864 500	41,0%	1 418 549	31,5%
Total	22 019 881	100,0%	28 954 094	100,0%	4 499 772	100,0%

Share of sectors in total regional final energy consumption

Supply baseline

PRIORITÀ ENERGETICHE E AZIONI STRATEGICHE

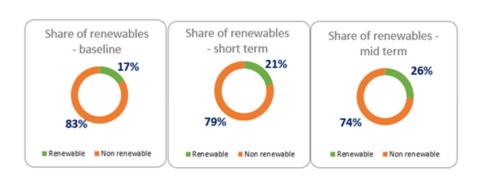
Aree orizzontali (sensibilizzazione al clima, rafforzamento del dialogo politico)

Potenziamento delle capacità istituzionali per la pianificazione regionale in materia energetica e climatica ("Agenzia regionale per il clima")

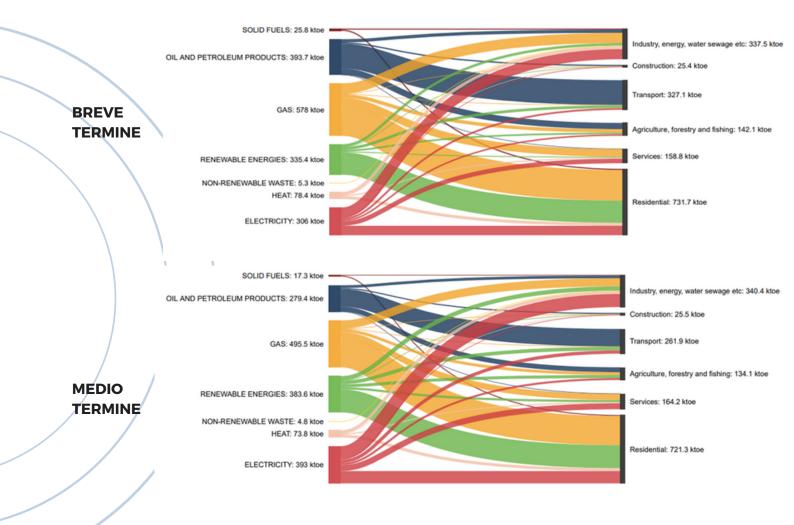
Efficienza energetica (edifici pubblici e infrastrutture, edifici residenziali e PMI)

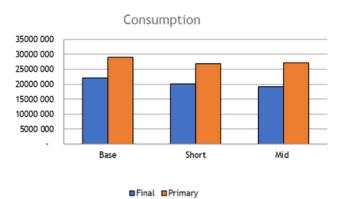
Fonti energetiche rinnovabili potenziali:

- energia solare
- energia geotermica
- uso sostenibile della biomassa


Elettromobilità

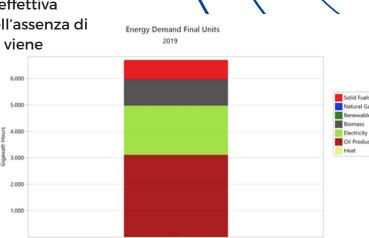
Ricerca e sviluppo, innovazione


SCENARIO 2030 (breve termine) E 2040 (medio termine)


Fossil shift in SGP by 2030

Shift in energy source up to 2040										
Estimation of regional final energy demnand (MWh)	Solid fossil fuels	Crude oil and petroleum products	Gas	Renewable energies	Non renewable wastes	Electricity	Derived heat & grid bound thermal system	Total		
Agriculture, forestry and fishing	0	703 358	404 473	428 138	0	230 193	0	1 766 162		
Industry	94 179	396 677	1 175 728	612 368	64 492	1 457 681	427 232	4 228 356		
Construction	1 307	166 603	49 903	43 261	0	64 103	3 920	329 096		
Transport	0	2 875 433	46 957	593 713	0	372 656	0	3 888 760		
Services	748	19 382	873 837	308 904	1 846	655 544	163 362	2 023 622		
Residential	142 144	0	3 980 481	3 128 775	0	1 467 678	389 557	9 108 636		
Total	238 377	4 161 454	6 531 378	5 115 160	66 338	4 247 854	984 071	21 344 632		
Change compared to baseline (2016)	-49,8%	-28,9%	-14,6%	59,5%	0,0%	11,7%	1,4%	-3,1%		

SFIDE E OPPORTUNITÀ


- aliman" nuà assara avanta dal ba
- La proposta "Agenzia regionale per il clima" può essere creata dal basso solo grazie alla forte volontà politica e all'impegno degli stakeholder locali.
- A causa della programmazione centralizzata, l'accesso ai finanziamenti pubblici può creare squilibri tra le regioni in base alle potenzialità di sviluppo e al livello di preparazione.
- Tra il 2030 e il 2040 (a causa dell'ampliamento della centrale nucleare di Paks) non è prevedibile la quota di energia nucleare nella fornitura di energia elettrica. L'allineamento della tassonomia dell'UE sull'energia nucleare sarà una decisione cruciale per l'Ungheria.
- La regione del PSC dipende fortemente dalle esportazioni di energia e non si possono prevedere cambiamenti significativi su un orizzonte temporale di medio termine.
- Il ritorno finanziario sull'efficienza energetica e sulla costruzione di soluzioni rinnovabili integrate è generalmente troppo lungo per incoraggiare le persone a investire nell'ammodernamento energetico delle loro case.

SPLIT-DALMAZIA

Split-Dalmazia è la regione più grande della Croazia, situata nella parte meridionale e costiera del paese, che si affaccia sull'Adriatico.

La parte insulare della regione è costituita da 74 isole e 57 atolli e scogliere: è un territorio orientato al turismo, mentre il settore industriale è indubbiamente meno presente comparato alla quota nazionale.

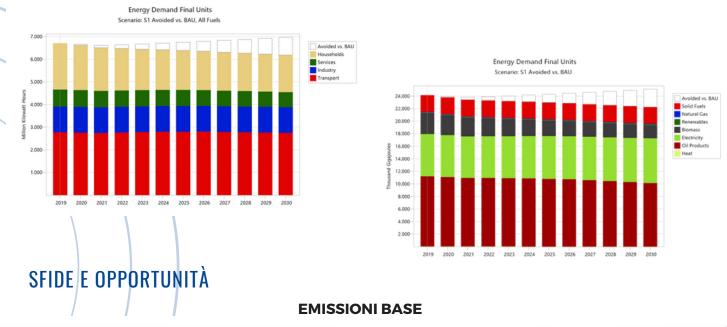
In termini di mix energetico, l'elettricità è generata solamente da fonti rinnovabili, rispettivamente idroelettrico, eolico e fotovoltaico. Per quanto riguarda l'autoapprovvigionamento di energia elettrica, le capacità installate producono quasi il doppio rispetto all'effettiva domanda di energia elettrica. Inoltre, a causa dell'assenza di impianti di teleriscaldamento, l'energia elettrica viene utilizzata anche per produrre calore.

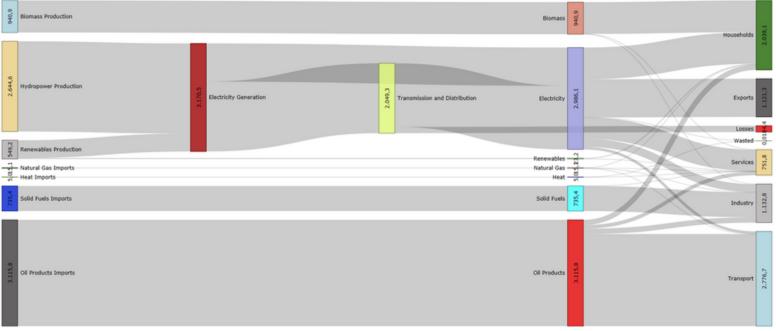
PIANO D'AZIONE

BASE DI RIFERIMENTO DEL SISTEMA ENERGETICO

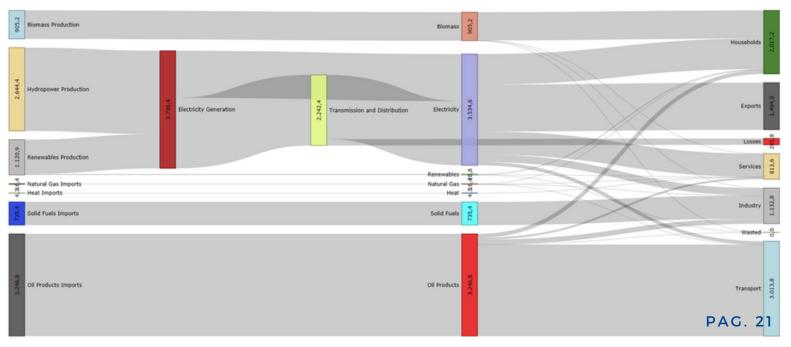
- Domanda energetica totale: 6700,4 GWh/a
- Emissioni di CO2 totali: 1467,3 migliaia t/a
- Ouota di rinnovabili nel consumo finale: 42%
- Quota di rinnovabili nella produzione elettrica: 100%
- Produzione energetica interna: 60% del consumo finale

PRIORITÀ ENERGETICHE E AZIONI STRATEGICHE


<u>Statistiche energetiche</u> (domanda e offerta a livello regionale, bilanci energetici annuali, formazione dei team energetici locali, ecc.);


<u>Efficienza energetica</u> (intensificare l'utilizzo del Sistema Informativo di Gestione dell'Energia, migliorare l'analisi dei dati energetici - "big data", analisi multicriterio, selezione delle priorità di investimento -, monitoraggio continuo dei consumi energetici/idrici, definizione di nuovi programmi di efficienza energetica, retrofit energetico-sismico di costruire, ristrutturazione di edifici/quartieri secondo i principi nZEB;

<u>Energie rinnovabili</u> (miglioramento della pianificazione territoriale delle FER, aumento degli investimenti privati, ricerca nel campo dell'accumulo di energia su larga scala, ecc.);


Mobilità sostenibile (promozione dei combustibili alternativi, focus sulla mobilità elettrica).

OBIETTIVI 2030

EMISSIONI 2030

RACCOMANDAZIONI POLITICHE

Nell'Unione Europea i fondi pubblici svolgono attualmente un ruolo di primo piano nel promuovere la transizione economica verde. L'uso efficace dei fondi pubblici pone un'enorme responsabilità su t

Nel processo di decarbonizzazione, tutte le parti interessate lungo l'intera catena del valore hanno una grande responsabilità nel rendere efficace l'uso dei fondi pubblici: assieme bisogna stabilire con attenzione priorità e misure, progettare meccanismi di consegna efficienti e garantire un'attuazione significativa, tempestiva e responsabile, nonché garantire la trasparenza di tutti i processi al fine di favorire il miglioramento continuo a tutti i livelli. Uno degli obiettivi chiave di PROSPECT2030 è stato quello di valutare l'efficienza dell'assorbimento dei fondi pubblici dedicati alle misure di decarbonizzazione nelle sette regioni partner nel periodo di programmazione 2014-2020 e, sulla base dei risultati e delle conclusioni, formulare raccomandazioni politiche che contribuiscono alla programmazione per il periodo 2021-2027 a livello UE, transnazionale, nazionale e regionale.

Le fonti non si limitano alla valutazione del finanziamenti low-carbon nel periodo di programmazione 2014-2020, ma comprendono anche le risposte anticipate al nuovo quadro strategico comprendente Green Deal europeo e il pacchetto "Fit for 55%" e la pianificazione finanziaria in due dimensioni, il quadro finanziario pluriennale (2021-2027) e la NextGeneration EU. Le raccomandazioni tengono in considerazione anche i risultati raggiunti da PROSPECT2030, in particolare in termini di pianificazione energetica regionale e di contributi alla discussione nell'ambito delle attività formative.

Le raccomandazioni politiche sono state adattate a ciascuna strategia macroregionale dell'Europa Centrale (EUSDR, EUSAIR, EUSBSR, EUSALP) al fine di influenzare i decisori chiave.

È stato chiaro fin dall'inizio che gli investimenti necessari per raggiungere gli obiettivi della politica energetica e climatica sono ben oltre la capacità delle risorse finanziarie pubbliche. Pertanto, i fondi pubblici devono concentrarsi su aree in cui è possibile ottenere il massimo impatto facendo leva sui finanziamenti privati per rendere concreto in Europa il nostro futuro a zero emissioni.

Raccomandazioni politiche: video animato

Sul canale YouTube di progetto abbiamo pubblicato in inglese un video riassuntivo sulle raccomadazioni politiche: <u>Policy recommendations - public funds for the energy transition.</u>

MUTUO APPRENDIMENTO E FORMAZIONE

I partner di PROSPECT2030 sono stati coinvolti in un reciproco scambio di conoscenze, competenze e best practice sulla pianificazione energetica e sui meccanismi finanziari innovativi per ottimizzare l'uso dei finanziamenti pubblici.

Questa attività di formazione si è concretizzata in una serie di workshop e sessioni peer-topeer rivolte internamente al consorzio, ma aperte anche a partecipanti e ospiti esterni.
Tutti i materiali di formazione sviluppati nell'ambito del progetto sono stati raccolti e
organizzati in un pacchetto formativo online suddiviso in 7 temi: dal sito di progetto è
possibile scaricare le presentazioni e guardare le registrazioni video delle sessioni di
formazione. A introdurre ogni argomento c'è una breve videointervista con protagonisti i
partner di progetto.

- 14 SESSIONI PEER-TO-PEER
- 12 PARTNER ESTERNI COINVOLTI
- WORKSHOP CON I PARTNER "REPLICA"
- WORKSHOP INTERNI AL CONSORZIO

A dicembre 2020 PROSPECT2030 ha lanciato un bando aperto per coinvolgere dei "partner replica" esterni al consorzio: hanno risposto **12 istituzioni** provenienti da tutta Europa, di cui 8 sono diventate protagoniste di un corso di formazione online in cui ci siamo scambiati conoscenze e competenze nel campo della pianificazione energetica.

Tra marzo e maggio 2021 abbiamo organizzato sette workshop aperti al pubblico: tutto il materiale prodotto durante queste sessioni è disponibile sul sito web.

I partner esterni coinvolti provengono da **Austria, Bosnia ed Erzegovina, Croazia, Germania, Ungheria, Italia, Polonia e Slovenia**.

Quali benefici vorresti ottenere dalle nostre attività di replica?

Scambio e discussione sul fatto che gli attuali schemi di finanziamento siano ben allocati o se dobbiamo andare in nuove direzioni per affrontare l'urgenza del cambiamento climatico e aumentare le misure di mitigazione.

Energiewende Oberland

Ci interessa imparare gli uni dagli altri e scambiare conoscenze. Siamo aperti anche ad applicazioni innovative nell'area RES.

Energy and Innovation Center of Weiz

Vorremmo utilizzare l'esperienza di PROSPECT2030 per migliorare la pianificazione energetica nella nostra regione.

LENERG Energy Agency

Citazioni dai sondaggi anonimi di soddisfazione:

Ho trovato particolarmente interessante la presentazione che trattava della transizione energetica e sottolineava l'importanza delle competenze "trasparenti" piuttosto che delle competenze tecniche.
Interessanti anche i workshop sulle scoperte all'avanguardia nella gestione dell'energia, nell'accumulo e le esperienze pratiche con l'approccio CasaClima/sistema di qualità.

Mi sono piaciute molto le discussioni sui nuovi modi di interagire con le parti interessate.

Ho particolarmente apprezzato il Workshop nr.2 sull'efficienza energetica negli edifici e il nr.7 sul coinvolgimento degli stakeholder e il ruolo dei consumatori.

IL PACCHETTO DI FORMAZIONE È DISPONIBILE QUA

7 ARGOMENTI:

- Pianificazione e transizione energetica
- Efficienza energetica negli edifici
- Finanziamento dell'efficienza energetica
- Trasporto sostenibile
- Sistemi di energia rinnovabile
- Reti e infrastrutture energetiche
- Coinvolgimento di stakeholder e ruolo dei consumatori

NETWORKING E DIVULGAZIONE

Nonostante la pandemia, i partner di progetto sono riusciti a presentare gli obiettivi e i risultati di PROSPECT2030 in occasione di eventi pubblici e altre occasioni di divulgazione, a livello nazionale e internazionale.

Grazie alle attività di apprendimento reciproco e formazione rivolta verso l'esterno, abbiamo stabilito contatti con progetti che lavorano su temi simili nell'area dell'Europa centrale e non solo, scambiando esperienze e buone pratiche sulla gestione dei fondi pubblici e sulla pianificazione energetica, sensibilizzando sull'urgenza di potenziare le azioni di mitigazione climatica. Ogni partner ha anche organizzato due eventi locali nelle sette regioni target. A livello di progetto, il consorzio ha organizzato un webinar durante gli Energy Days 2020 e ha partecipato all'edizione digitale 2020 della Settimana Europea delle Regioni e delle Città (EWRC); il progetto è stato presentato all'incontro del gruppo Action 9 di EUSALP e ha partecipato a numerosi workshop e conferenze internazionali, ad esempio l'iniziativa Get Ready for 2050 organizzata congiuntamente dal Patto dei sindaci e dai progetti H2020 C-Track 50 e PentaHelix, e al workshop del progetto Interreg Europe SHREC "Politiche energetiche e progetti innovativi in Piemonte".

20 ATTIVITÀ DI DISSEMINAZIONE

60 COMUNICATI STAMPA E ARTICOLI

Energy Modelling Platform for Europe (EMP-E) conference

Modelling Climate Neutrality for the European Green Deal | 08.10.2020

EWRC - European Week of Regions and Cities

Let's make carbon-neutral regions happen! | 14.10.2020

EUSALP Action Group 9

Reflections on carbon-neutrality for regions and necessary actions \11.03.2021

GET READY FOR 2050!

How to successfully plan for the future | 27.05.2021

VIDEO DI PROGETTO

The EU is a pioneer in taking action against climate change

MANAGING
PUBLIC FUNDS
WISELY

POLICY RECOMMENDATIONS

PARTNER DI PROGETTO

Lead partner:

Regione Piemonte - Italia

Politecnico di Torino - Italia
Agenzia per l'energia della Mazovia Energy Agency - Polonia
Istituto energetico Hrvoje Požar - Croazia
Agenzia per l'energia del Friuli Venezia Giulia - Italia
Regione Autonoma Friuli Venezia Giulia - Italia
Centro europeo per l'energia rinnovabile Güssing Ltd. - Austria
AACM Central Europe Llc. - Ungheria
Università delle scienze applicate Magdeburg-Stendal - Germania

Partner associato:

Ministero dell'Ambiente, Agricoltura ed Energia Saxony-Anhalt - Germania

