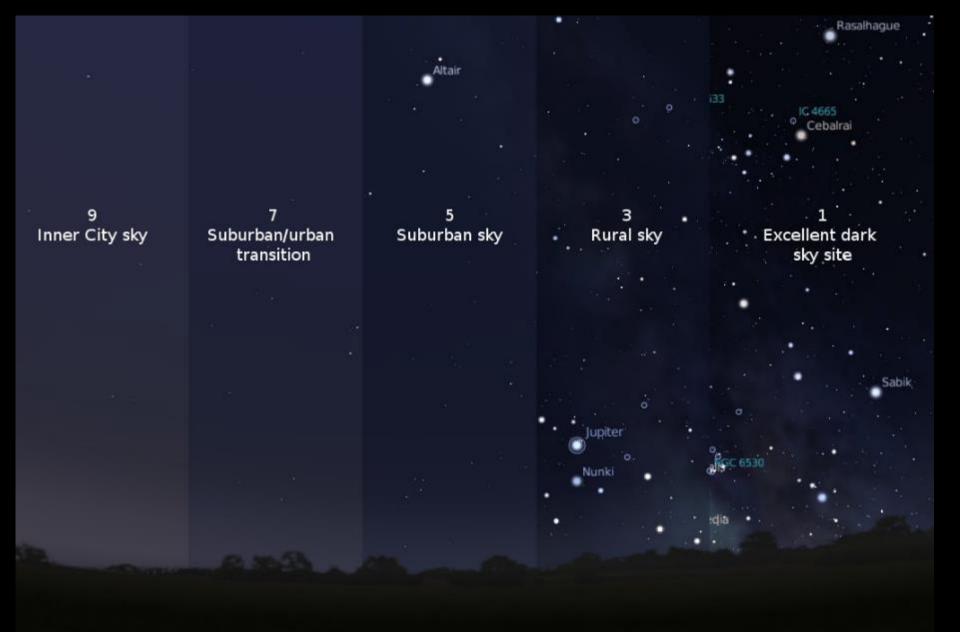


Sustainable outdoor lighting

STARS4ALL

And how light pollution is affecting our ecosystems


Sibylle Schroer Department of Ecohydrology

Belektro, Berlin 6th of November 2018

Photo: NASA Earth Observatory

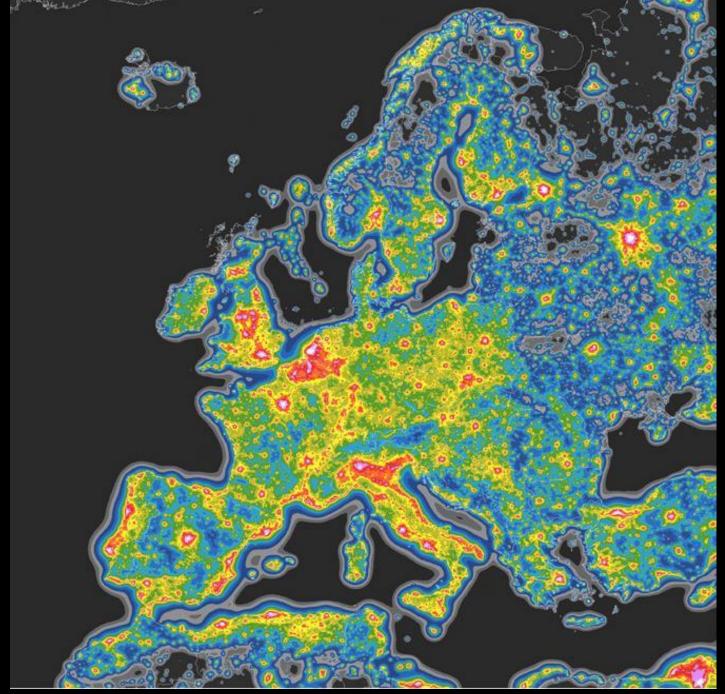
Photo: NASA Earth Observatory

Red is the new black

Kyba et al. Mon. Not. R. Astron. Soc. (2012)

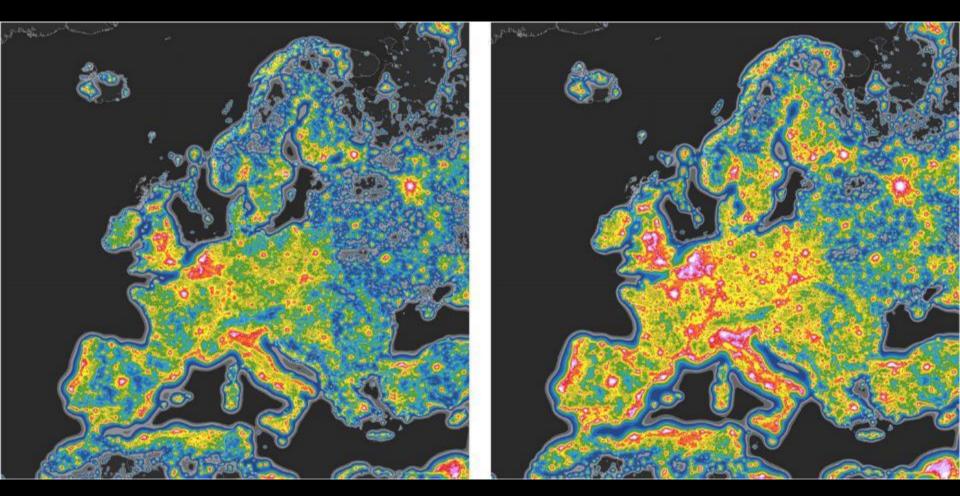
http://airfactsjournal.com/files/2013/01/clouds-at-night.jpg

http://davidpj.files.wordpress.com/2009/11/night-clouds.jpg?w=800



Research for the future of our freshwaters

Brightness of nightscapes

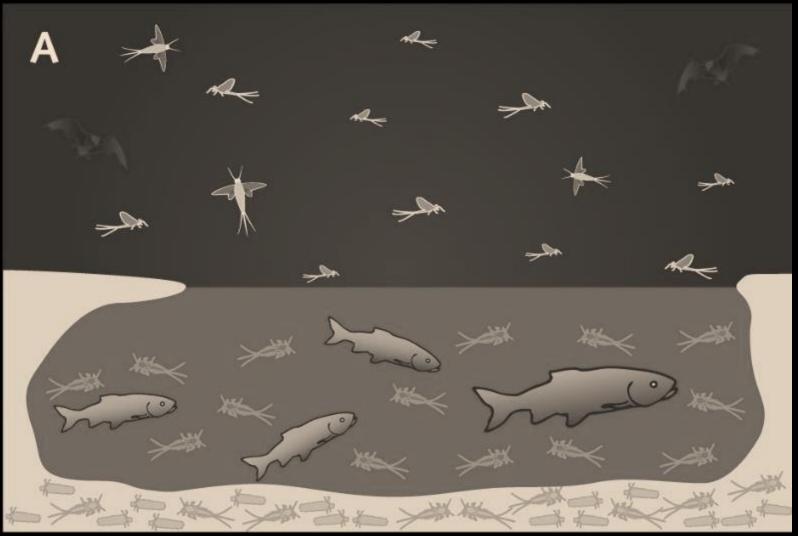


Photos: Andreas Hänel

Fabio Falchi et al. Sci Adv 2016;2:e1600377

Increase of brightening when using 4000K LED

Research for the future of our freshwaters

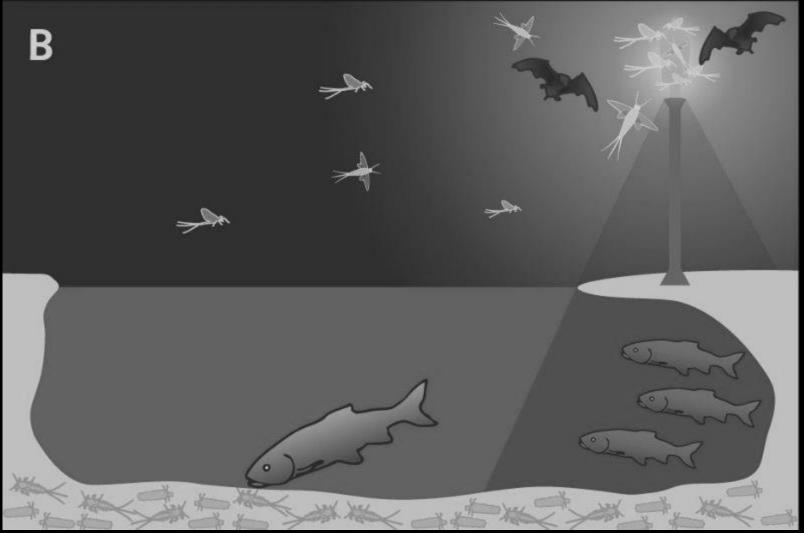

Fabio Falchi et al. Sci Adv 2016;2:e1600377

Night as living space

	Estimated number of described species	Thereof nocturnal [%]		
Vertebrates				
Mammals	5 488	63,8		
primates (incl. <u>I</u>	<u>4.</u>			
<u>sapiens)</u>	432	31		
bats	1100	100		
birds	9 990	19,6		
reptiles	8 969	16,6		
amphibians	6 433	93,3		
Fishes	30 700	14,1		
Total	61 580	28,0		
Invertebrates				
Insects	950 000	49,4		
Lepidoptera	180 000	77,8		
Colleoptera	500 000	60		
Crustacean	40 000	50		
Arachnidae	98 000	5		
Molluscs	81 000	?		
Coral	2 175	?		
others	61 209	?		
Total	1 232 384	64,4		

Hölker et al. . *Trends Ecol. Evol.* 12, 681–682 (2010)

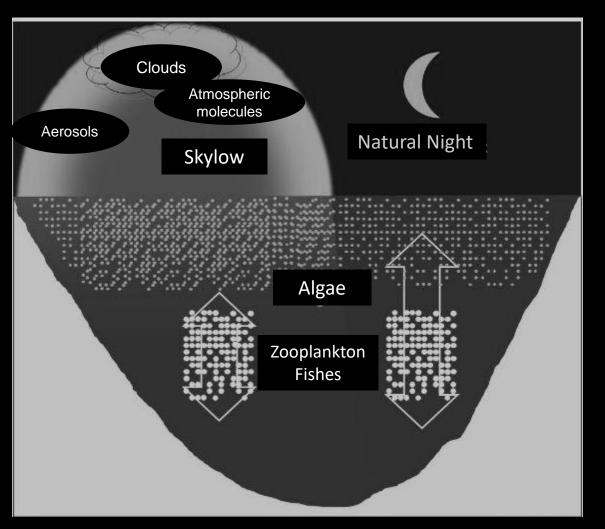
Riparian ecosystems – a source for life



Research for the future of our freshwaters

Perkin et al. (2011 und 14)^{d Inland}

Light has an effect



Research for the future of our freshwaters

Vertical Migration of zooplankton can be affected

Moore et al. *Int. Ver.Theor. Angew. Limnol. Verhandl.* 27, 779–782 (2000)

Image F. Hölker

Occurrence of small and middle sized fishes

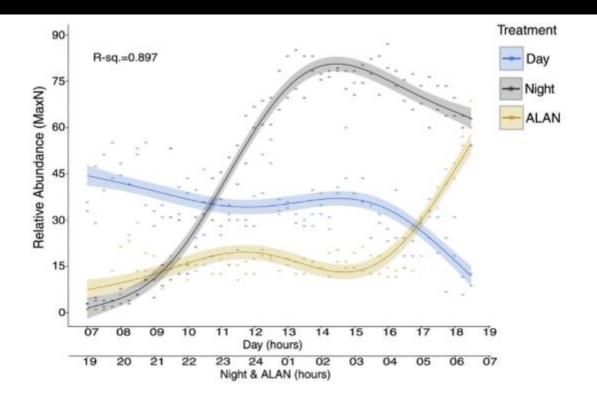


Fig. 1. Observed fish abundances (MaxN) per 15 min block with fitted GAMM models over an 11.5 h period between light environment treatments (from 7 am to 6:30 pm for day treatments and from 7 pm to 6:30 am for the night and ALAN treatments).

Bolton et al. Sci. Total Environ. 576,1–9. (2017)

Migration routes of birds can be affected

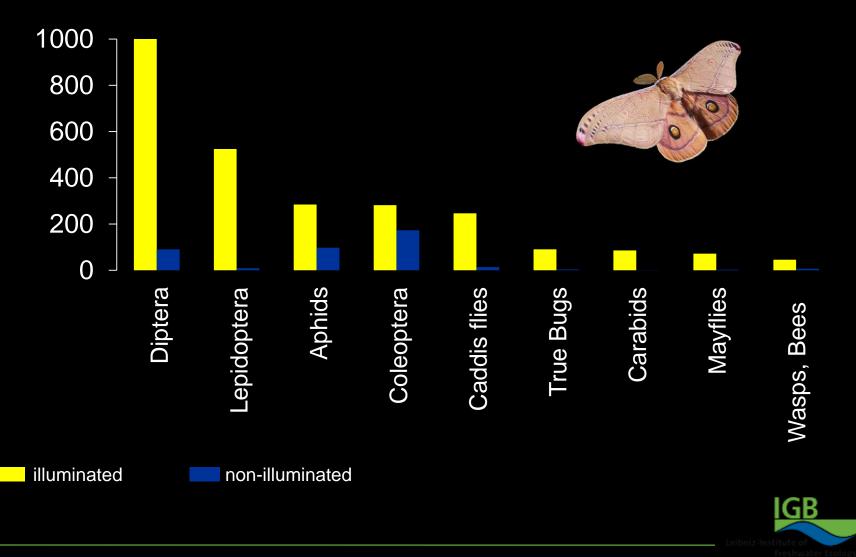
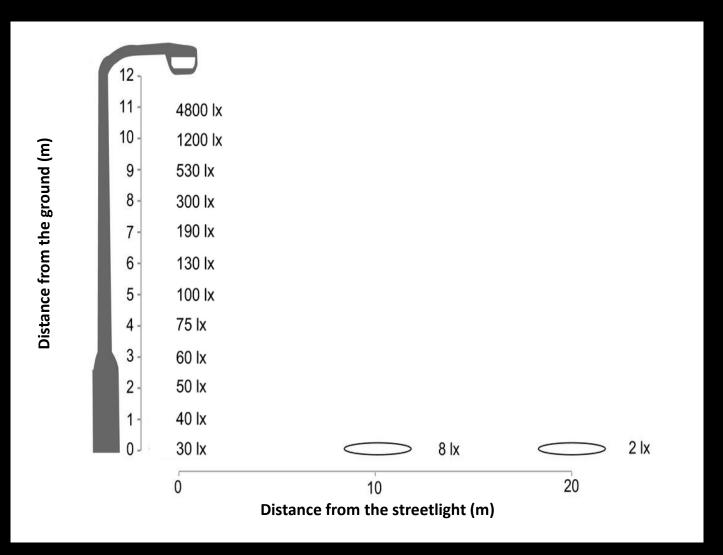

Cabrera-Cruz et al. (2018) Scientific Reports 8: 3261.

Photo: Stefan Heller


Insect caught at streetlamps per year

Research for the future of our freshwaters

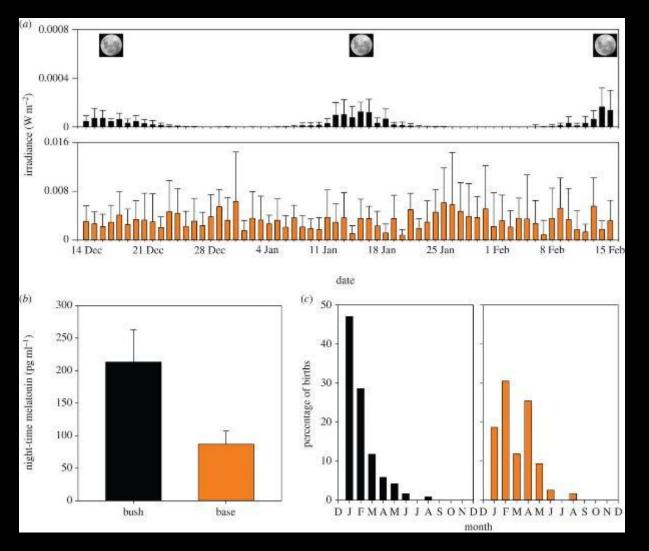
Foto:Fir0002 Wikipedia - File:Polyphemus moth.jpg CC BY-SA 3.0 she

Light intensity of a street light

Bennie et al., Journal of Ecology (2016) CC BY 4.0

Insect decline

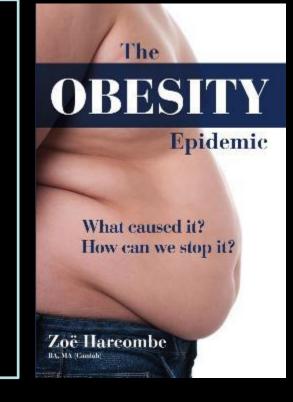
- Substantial moth declines in abundance and distribution Fox, R. (2013) *Insect Conservation and Diversity*, **6**, 5–19.
- Out of 71 species have 30% biomass declined


Conrad, K.F et al.(2006) Biological Conservation, 132, 279–291.

- Over 75% biomass decline of flying insects within 27 years Hallmann et al. (2017) *Plos ONE*, **12**, e0185809.
- 80% biomass decline of insects between 1989-2013 Vogel, G. (2017) Science, 356, 576–579.
- Nocturnal Lepidoptera higher decline than day active van Langeveldeet al.(2017). *Global Change Biology*.

Wallabies on a naval base compared to bushland

Robert et al. Proc. R. Soc. B 2015; 282: 20151745



Artificial light can suppress melatonin

Melatonin

₽

Sleep-wake-rhythm Immune system Metabolism Circadian clock

What can be done?



Illustration: Rainer Stock, Loss of the Night Network 2016

Optimise the radiation angle

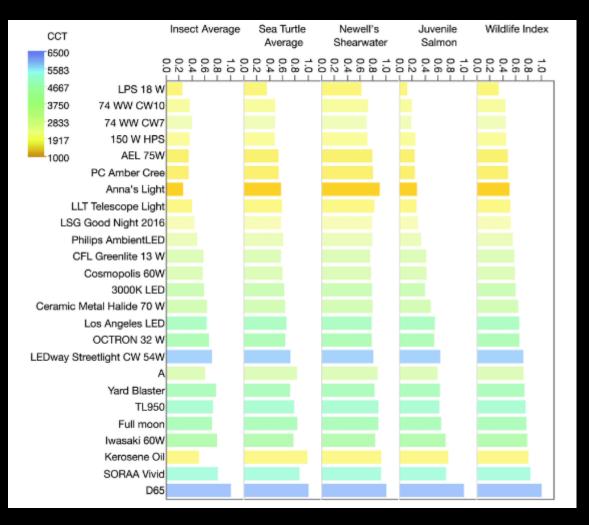
Illustration: Rainer Stock, Loss of the Night Network 2016

Direct the light to where it is needed

bniz-Institute of Freshwater Ecology and Inland Fisheries

Research for the future of our freshwaters

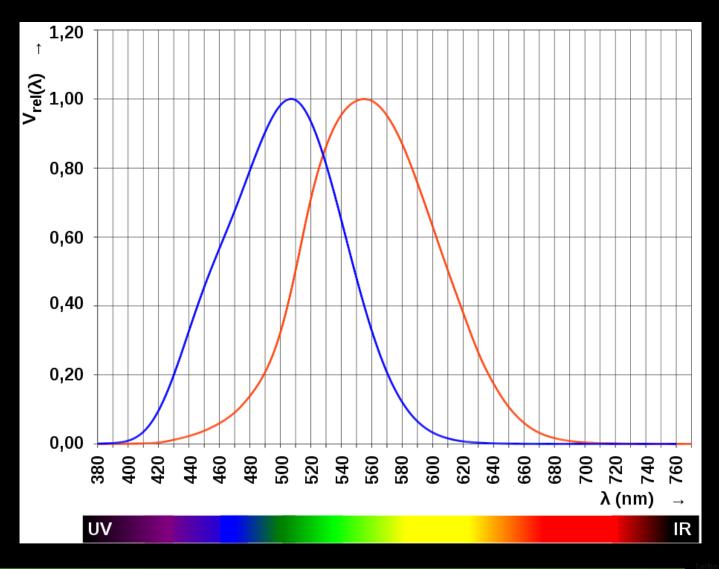
Examples of Acceptable / Unacceptable Lighting Fixtures


Illustration: Bob Crelin

Use ambient light colours

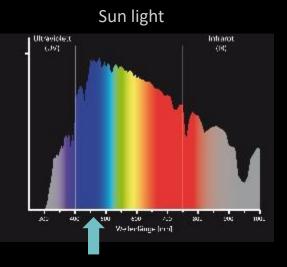
Illustration: Rainer Stock, Loss of the Night Network 2016

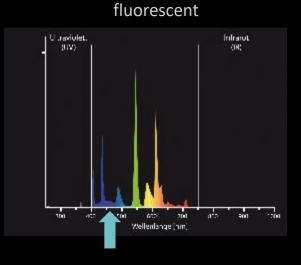
Wildlife index for expected impact of different lamp types

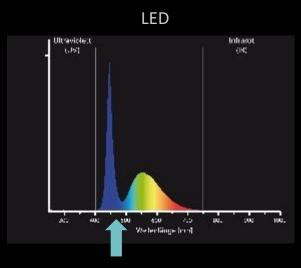

Longcore, et al. Ecology and Integrative Physiology (2018)

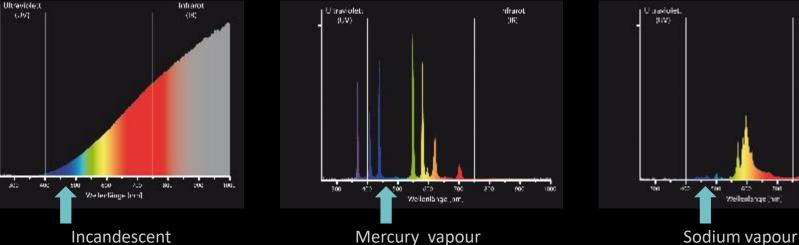
Photos: J. Hattenbach, C. Kohl, A. Lorberth, S. Frank

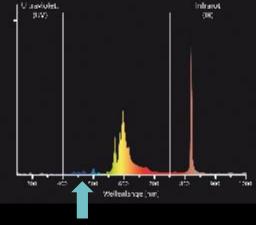
Luminous flux


HHahn - CC BY-SA 3.0




Research for the future of our freshwaters


https://commons.wikimedia.org/w/index.php?curid=9099891


Colour spectra of different light sources

Use the low light intensity

Illustration: Rainer Stock, Loss of the Night Network 2016

Switch off the light whenever you don't need it

Photos: C. Reinboth (I.), B. Hoffmeier (r.)

Use dimming technology

- Saves energy
- Saves money
- Even gas-discharcrge lamps are dimmable

Research for the future of our freshwaters Photo: http://www.dimmlight.de/home/dimmlight/amortisation.htm

Tucson airport, USA

- In 2014 lighting was changed around the terminal, roadways and parking lots
- Energy savings of > 1.5 million kwh
- Total project costs was \$ 813 000, payback is estimated by 4 to 27 years.

Tucson airport: Lumen comparison

TUCSON INT. AIRPORT NEW AND OLD LUMENS COMPARISON FOR LED FIXTURES ACQUISITIONS PROJECT (2014).

	OLD SYSTEM				NEW SYSTEM						
AREA	QTY.	LGT. TYPE	DESCRIPTION	LUMENS	TOTAL	Q	TY.	LGT. TYPE		LUMENS	TOTAL
PARKING GARAGE	397	A,A2,A3	175W METAL HALIDE	12,500	4,962,500	3	97	A	53W GARAGE LED	4,400	1,746,800
QTA & Eco. Prk.	21	S (S3)	1000W HPS, 50' POLE	124,000	2,604,000		21	S (S3)	218W LED POLE LGT	21,326	447,846
QTA & Eco. Prk.	60	S (S4)	1000W HPS, 50' POLE	124,000	7,440,000		50	S (S4)	218W LED POLE LGT	21,326	1,279,560
QTA & Eco. Prk.	10	AAA	250W HPS @ CANOPY	26,000	260,000		10	AAA	53W CANOPY LED LGT	4,400	44,000
QTA & Eco. Prk.	2	U2	1000W HPS, 20' POLE	124,000	248,000		2	U2	131W POLE LED LGT	10,541	21,082
QTA & Eco. Prk.	16	U4	1000W HPS, 50' POLE	124,000	1,984,000		16	U4	218W LED POLE LGT	21,326	341,216
CIRC. ROADWAY	18	R (R3)	1000W HPS, 50' POLE	124,000	2,232,000		18	R (R3)	218W LED POLE LGT	21,326	383,868
CIRC. ROADWAY	32	R (R4)	1000W HPS, 50' POLE	124,000	3,968,000	;	22	R (R4)	218W LED POLE LGT	21,326	682,432
CIRC. ROADWAY	5	P	250W HPS @ CANOPY	26,000	130,000		5	P	131W POLE LED LGT	10,541	52,705
CIRC. ROADWAY	10	P (P2)	250W HPS @ CANOPY	26,000	260,000		10	P (P2)	131W POLE LED LGT	10,541	105,410
CIRC. ROADWAY	24	AA	250W HPS @ CANOPY	26,000	624,000		24	AA	53W CANOPY LED LGT	4,400	105,600
TERM, APRON LGT.	52	T (T4)	1000W HPS, 50' POLE	124.000	6,448.000		52	T (T4)	280W POLE ARM LGT	23.435	1.218.620
TERM, APRONEOT.	52	- (14)	1000WTHP3, 30 FOLL	124,000	0,440,000	H	02	1 (14)	200W FOLE AIWIEGT	20,400	1,210,020
	OLD LUMENS TOTAL 31,160,500				31,160,500				NEW LUME	NS TOTAL	6,429,139

9/17/2014

NEW SYSTEM IS 21 % LUMENS OF OLD SYSTEM

Tucson airport: Watt age comparison

TUCSON INT. AIRPORT NEW AND OLD WATTS COMPARISON FOR LED FIXTURES ADQUISITIONS PROJECT (2014).

	OLD SYSTEM					11	NEW SYSTEM					
AREA	QTY.	LGT. TYPE	DESCRIPTION	WATTS	TOTAL	11	QTY.	LGT. TYPE	DESCRIPTION	WATTS	TOTAL	
PARKING GARAGE	397	A,A2,A3	175W METAL HALIDE	210	83,370	11	397	A	53W GARAGE LED	55	21,835	
074 0 544 544	24	0.(03)	400000 1000 500 500 5	4.400	03.400	╎╎	~	0.000		000	4 600	
QTA & Eco. Prk.	21	S (S3)	1000W HPS, 50' POLE	1,100	23,100		21	S (S3)	218W LED POLE LGT	220	4,620	
QTA & Eco. Prk.	60	S (S4)	1000W HPS, 50' POLE	1,100	66,000	ΙL	60	S (S4)	218W LED POLE LGT	220	13,200	
QTA & Eco. Prk.	10	AAA	250W HPS @ CANOPY	310	3,100		10	AAA	53W CANOPY LED LGT	55	550	
QTA & Eco. Prk.	2	U2	1000W HPS, 20' POLE	1,100	2,200		2	U2	131W POLE LED LGT	135	270	
QTA & Eco. Prk.	16	U4	1000W HPS, 50' POLE	1,100	17,600		16	U4	218W LED POLE LGT	220	3,520	
						ΙL						
CIRC. RODWAY	18	R (R3)	1000W HPS, 50' POLE	1,100	19,800		18	R (R3)	218W LED POLE LGT	220	3,960	
CIRC. RODWAY	32	R (R4)	1000W HPS, 50' POLE	1,100	35,200	[32	R (R4)	218W LED POLE LGT	220	7,040	
CIRC. RODWAY	5	Р	250W HPS @ CANOPY	310	1,550	[5	P	131W POLE LED LGT	135	675	
CIRC. RODWAY	10	P (P2)	250W HPS @ CANOPY	310	3,100	[10	P (P2)	131W POLE LED LGT	135	1,350	
CIRC. RODWAY	24	AA	250W HPS @ CANOPY	310	7,440		24	AA	53W CANOPY LED LGT	55	1,320	
TERM. APRON LGT.	52	T (T4)	1000W HPS, 50' POLE	1,100	57,200		52	T (T4)	280W POLE ARM LGT	280	14,560	
						╎┝						
				TOTAL	319,660	ŀ١			NE	W TOTAL	72,900	

NEW SYSTEM IS 23 % LUMENS OF OLD SYSTEM

9/29/2014

Tucson airport: Danette Bewley Vice President of Operations and Projects

"The lighting project not only reduced energy use but it also improved the quality of lighting and the night time aesthetics of our facility for our tenants, the staff and the traveling public"



Illustration: Rainer Stock, Loss of the Night Network 2016

Light pollution is an environmental problem that could be solved in a life time

What is good illumination?

- Efficient
- Creates visibility and safety
- Improves aesthetics
- Has low impact on ecology, human health or well-being, and the starry nightscape

Thank you!

Research for the future of our freshwaters

Image: Andreas Hänel, Westhavelland