

DEVELOPING THE GIS BASED METHOD TO ASSESS CUMULATIVE EFFECT OF N(S)WRM AT THE RIVER BASIN SCALE

D.T2.2.2 - Reports from testing the static method to assess cumulative effect of N(S)WRM (Pilot action)	Version 1 02 2020
Testing in the Blh pilot catchment	02 2020
Slovak Water Management Enterprise	

Circulatio	n		
Issue	Date	Details	Editor
v1	02.2020	Document first draft version	J. Dobias, E. Harman, M. Koli, SWME
v1-1	03.2020	Document second draft version	J. Dobias, E. Harman, SWME
v1-2	05.2020	Document third draft version	M. Čomaj, Water Research Institute (WIR), M. Supeková, SWME,

Table of content

1.	INT	FRODUCTION	4
2.	DE	SCRIPTION OF INPUT DATA PREPARATION	5
3.	МС	DDIFICATIONS TO THE STATICTOOLS.XLSX TOOL PARAMETERS	11
4.	DE	SCRIPTION OF RESULTS	
	4.1.	For the expert variant	13
	4.2.	For the variant of local preferences	
	4.3.	Comparison of variants	
5.	CO	NCLUSIONS	
6.	RE	COMMENDATIONS	
7.	LIS	T OF FIGURES	40
8.	LIS	T OF TABLES	41
9.	RE	FERENCES	42
10.	AN	NEX	43

1. INTRODUCTION

The purpose of developing the StaticTool method and the computer application StaticTool.xlsm is to enable the estimation of the effects of the implementation of a program of natural small water retention measures (PoNSWRM, Program of measures) in a simplified way, which does not require the time-consuming and costly development of detailed models, hydrological or / and hydraulic, of the analysed catchment. Method is making use of a grading based on expert knowledge and is used to compare variants of the NSWRM program.

The potential effects of individual NSWR measures may be different, depending on the climatic and physiographic conditions (e.g. slopes, ground permeability) of the analysed area, so the method parameters should be adapted to local conditions (climate type, landscape type). The StaticTool method thus consists of two parts:

- developing method parameters for local conditions,
- estimation of the effects of activities planned under the Program of Natural Small Water Retention Measures.

The StaticTool method assumes that the expected effect of the PoNSWRM is to improve catchment retention properties, which is understood as increasing low flows (LowQ), reducing high flows (HighQ) and / or limiting the load of pollutants yielded from the catchment area (Qual). This effect depends on the planned measures, in particular: i) their type and ii) the level of intensity. The measures included in the StaticTool method are summarized in the local catalogue of measures. For each measure, an intensity criterion is formulated, and threshold values are defined that correspond to the characteristic intensity levels (low, medium, high). Each measure is also assigned the expected improvement of retention properties of the SPU, expressed on a point scale (0 - 5 points). The greatest improvement that can be achieved (maximum points for a given measure) corresponds to the implementation of the measure with maximum intensity. For lower intensity levels, the assigned grades are proportional to the level of intensity of planned measure. Hence, developing parameters of the StaticTool method means defining a set of functions that make grade assessment dependent on the type of planned measures and their intensity for each measure from the local catalogue.

The StaticTool method and the StaticTool.xlsm application were developed as part of the project FramWat, Work Package T2 (Effectiveness of the Natural Small Water Retention Measure), activity A.T2.2 (Developing the GIS based method to assess cumulative effect of N(S)WRM at the river basin scale), deliverable D.T2.2.1 (Static method to assess cumulative effect of N(S)WRM in the river basins). A detailed description of the methodology is in a separate file created by the author of the program. This report presents the results of testing the static method to assess cumulative effect of N(S)WRM via developed application (program) StaticTool.xlsm for the Slovak Pilot Catchment of the Blh River within Slaná River Basin.

2. DESCRIPTION OF INPUT DATA PREPARATION

The first step of the work with the StaticTool.xlsm program, it was necessary to specify the N(S)WRM types, for which calculations will be carried out for expert variant and for variant of local preferences. There were used measure types proposed within Concept plan preparation and these are showed in Fig.1 for both expert variant and for local preferences variant. For more information on variants see report on Concept plan preparation (4).

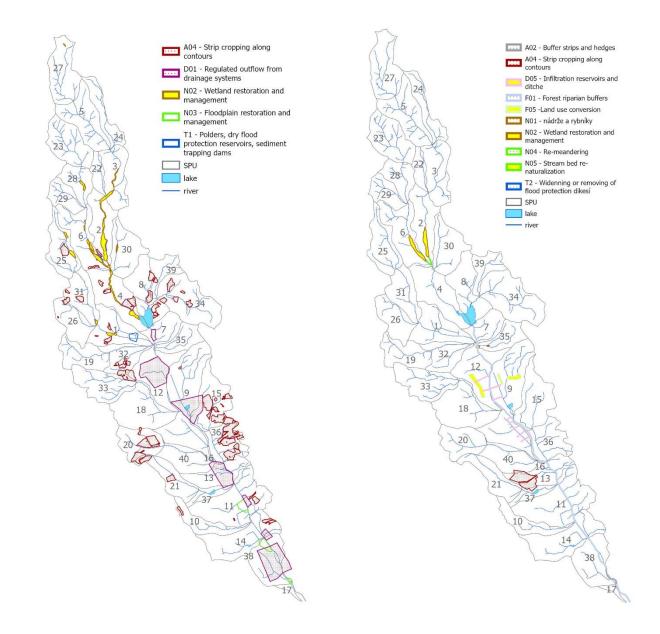


Fig. 1 Type and localization of measures proposed for expert variant and for local preferences variant

The types of measures are showed also in the table below (Tab. 1) and for all chosen individual measures the basic characteristic necessary to quantify criteria in the next steps of Statictool.xlsm application are calculated.

Code	Variant	Type NSWRM	Name	Parameters	Count of NSWRM	Area [ha]	Length [km]
				tesne siate plodiny sa			
				striedajú s riadkovými			
		Strip cropping		plodinami v minimálnej			
A04	Exp	along contours		šírke pásov - 15 m	54	915	-
				na území s existujúcimi			
				melioračnými			
				zariadeniami sa navrhujú			
		Regulated		opatrenia na regulovaný			
		outflow from		odtok vody z drenážnych			
D01	Exp	drainage systems		systémov	8	1268	-
				odstránenie inváznych			
				druhov rastlín a drevín,			
		Wetland		výsadba pôvodných			
		restoration and		druhov drevín, obnova			
N02	Exp	management		lúčnych ekosystémov	15	225	-
		Floodplain					
		restoration and					
N03	Exp	management		4 priepusty	4	115	-
				Rozloha nádrže: 30,35			
		Polders, dry flood		ha, celková kapacita:			
		protection		287600 m3, dĺžka			
		reservoirs,		priehrady - asi 643 m,			
		sediment		výška vzhľadom na dno			
T1	Exp	trapping dams	polder Papča	doliny - 6 m	1	30,35	-
				Rozloha nádrže: 28,67			
		Polders, dry flood		ha, celková kapacita:			
		protection		275000 m3, dĺžka			
		reservoirs,		priehrady - asi 1041 m,			
		sediment		výška vzhľadom na dno			
T1	Exp	trapping dams	polder Hrušovo 1	doliny - 10 m	1	28,67	-
				Rozloha nádrže: 18,08			
		Polders, dry flood		ha, celková kapacita:			
		protection		158200 m3, dĺžka			
		reservoirs,		priehrady - asi 761 m,			
		sediment		výška vzhľadom na dno			
T1	Exp	trapping dams	polder Hrušovo 2	, doliny - 7 m	1	18,08	-
				výsadba drevín na bočnú		,- 2	
		Buffer strips and		stranu hrádze Blh-			
A02	Loc	hedges		Ivanice	1	2	1,5
	1	 		tesne siate plodiny sa			,-
				striedajú s riadkovými			
		Strip cropping		plodinami v minimálnej			
A04	Loc	along contours		šírke pásov - 15 m	2	162	-

Tab. 1 Basic parameters of proposed measures for expert variant (Exp) and for local preferences variant (Loc)

Code	Variant	Type NSWRM	Name	Parameters	Count of NSWRM	Area [ha]	Length [km]
		Infiltration					
		reservoirs and					
		ditches (similar to					
D05	Loc	N13)		šírka 47 m, dĺžka 789 m	1	3,7	-
		Infiltration					
		reservoirs and					
		ditches (similar to					
D05	Loc	N13)		šírka 40 m, dĺžka 802 m	1	3,23	-
		Infiltration					
		reservoirs and					
		ditches (similar to					
D05	Loc	N13)		šírka 31 m, dĺžka 740 m	1	2,31	-
		Infiltration					
		reservoirs and					
		ditches (similar to					
D05	Loc	N13)		šírka 26 m, dĺžka 455 m	1	1,2	-
		Infiltration					
		reservoirs and					
		ditches (similar to					
D05	Loc	N13)		šírka 30 m, dĺžka 405 m	1	1,21	-
		Infiltration					
		reservoirs and					
		ditches (similar to		,			
D05	Loc	N13)		šírka 49 m, dĺžka 697 m	1	3,41	-
		Infiltration					
		reservoirs and					
		ditches (similar to		,			
D05	Loc	N13)		šírka 48 m, dĺžka 460 m	1	2,2	-
		Infiltration					
		reservoirs and					
		ditches (similar to		,			
D05	Loc	N13)		šírka 63 m, dĺžka 796 m	1	5,08	-
		Infiltration					
		reservoirs and					
		ditches (similar to					
D05	Loc	N13)		šírka 33 m, dĺžka 1103 m	1	3,64	-
				výsadba stromu každých			
		Forest riparian		6 metrov (vŕba, topol,			
F01	Loc	buffers		jelša)	1	161	27,63
				dubovo-brestovo-			
		Land use		jasenové nížinné lužné			
F05	Loc	conversion		lesy	3	79	-
				Rozloha nádrže: 1,82 ha,			
				celková kapacita: 54600			
				m3, dĺžka 180 m, šírka			
N01	Loc	Basins and ponds		101 m	1	1,82	-
				Rozloha nádrže: 1,44 ha,			
				celková kapacita: 43200			
				m3, dĺžka 164 m, šírka			
N01	Loc	Basins and ponds		88 m	1	1,44	-

Code	Variant	Type NSWRM	Name	Parameters	Count of NSWRM	Area [ha]	Length [km]
				odstránenie inváznych			
				druhov rastlín a drevín,			
		Wetland		výsadba pôvodných			
		restoration and		druhov drevín, obnova			
N02	Loc	management		lúčnych ekosystémov	3	240	-
N04	Loc	Re-meandering			1	161	27,63
		Stream bed re-					
N05	Loc	naturalization			2	16,34	2,33
		Widenning or					
		removing of flood					
Т2	Loc	protection dikes			1	161	-

At the initial stage, individual N(S)WRMs were merged under one (of the same) type and then aggregation was performed. Aggregated measures include a group of measures whose implementation in a similar way improves the retention properties of the catchment area, and assessment of the effects of individual activities, without detailed field or model studies at the current level of knowledge, is not possible. For the expert variant 4 records (A04 - WRAL; N02, N03 - ER; D01 - BPDA; T1) were received and for the local preferences variant 10 records (A02; A04 - WRAL; F01; F05 - AF; N01; N02 - ER; N04; N05 - BPRC; D05 - BPDA; T2) for variant local, see records in Tab. 2 and Tab. 3).

No	Individual measure ID	Individual measure name Aggregated measure ID		Aggregated measure name					
1	A04	Strip cropping along contours	WRAL	WRAL - best practices for Water Retention in Agricultural Lands					
2	N02	Wetlands restoration and management	ER	ER - Ecosystems Restoration / renaturisation of water dependent ecosystems					
3	N03	Floodplain restoration and management	ER	ER - Ecosystems Restoration / renaturisation of water dependent ecosystems					
4	D01	Regulated outflow from drainage systems	BPDA	BPDA - Best Practices on Drained Areas					
5	T1	Polders, dry flood protection reservoirs, sediment trapping dams	T1	Polders, dry flood protection reservoirs, sediment trapping dams					

Tab. 2 Aggregated measures identification - expert variant

Tab. 3 Aggregated measure identification - local preferences variant

No	Individual	Individual measure name	Aggregated	Aggregated measure name
	measure ID		measure ID	
1	A02	Buffer strips and hedges	A02	Buffer strips and hedges
2	A04	Strip cropping along contours	WRAL	WRAL - best practices for Water
				Retention in Agricultural Lands
3	F01	Forest riparian buffers	F01	Forest riparian buffers
4	F05	Land use conversion	AF	AF - Afforestation
5	N01	Basins and ponds	N01	Basins and ponds

No	Individual measure ID	Individual measure name	Aggregated measure ID	Aggregated measure name
6	N02	Wetland restoration and management	ER	ER - Ecosystems Restoration / renaturisation of water dependent ecosystems
7	N04	Re-meandering	N04	Re-meandering
8	N05	Stream bed re-naturalization	BPRC	BPRC - natural channels and Best Practises of River Channels maintenance
9	D05	Infiltration reservoirs and ditches	BPDA	BPDA - Best Practices on Drained Areas
10	T2	Widening or removing of flood protection dikes	Т2	Widening or removing of flood protection dikes

In the local preferences variant there exist only one individual measure relevant to one type of aggregated measure, so in fact no aggregation of measures in necessary and codes of individual measures may not be necessary replaced by codes of aggregated measures in the calculation below.

For each measure, the intensity criteria and the threshold values for characteristic intensity levels were defined. According to the assumptions of the StaticTool method, the expected improvement in the catchment retention properties depends on the type and level of intensity of planned measures. Three levels of measures' intensity were distinguished: low, medium and high. They correspond to three levels of the expected improvement in the catchment retention properties (e.g. small, average and large). Four threshold values were used: T0 - no action, Tlow - the boundary between low and medium intensity, Thigh - the limit between medium and high intensity and Tmax, which corresponds to the hypothetical maximum possible intensity of measures. Three elements of the catchment retention properties (low flows, high flows and erosion), with maximum intensity of measures' application. There was needed to formulate a general assessment of measures (three above-mentioned elements together) and defining effect coefficients for lower than maximum intensity of measures. For the assessment of the impact of aggregated measures on three elements of the catchment retention properties a 6-grade scale was adopted from 0 to 5, where:

- 0 means no positive impact on the retention properties of the catchment area, and
- 5 means very high positive impact on the retention properties of the catchment area.

The tables below show the parameters used for calculations in the expert and local preferences variants (Tab. 4- Tab. 7).

No	Code	Aggregated measure name	Low flows	High flows	Qual Erosion	AVG
1	WRAL/A04	WRAL - best practices for Water Retention in Agricultural Lands	0	2	4	2.00
2	ER	ER - Ecosystems Restoration / renaturisation of water dependent ecosystems		5	4	3.00
3	BPDA/D01	BPDA - Best Practices on Drained Areas	2	3	2	2.33
4	T1	Polders, dry flood protection reservoirs, sediment trapping dams	0	5	3	2.67

Tab. 4 Impact of measures on three elements of the catchment retention properties - expert variant

Tab. 5 Impact of measures on three elements of the catchment retention properties - local variant

No	Code	Aggregated measure name	Low flows	High flows	Qual Erosion	AVG
1	A02	Buffer strips and hedges	1	1	3	1.67
2	WRAL/A04	WRAL - best practices for Water Retention in Agricultural Lands	0	2	4	2.00
3	F01	Forest riparian buffers	0	1	3	1.33
4	AF/F01	AF - Afforestation	3	3	4	3,33
5	N01	Basins and ponds	3	3	2	2,67
6	ER/N02	ER - Ecosystems Restoration / renaturisation of water dependent ecosystems	0	5	4	3.00
7	N04	Re-meandering	0	2	2	1,33
8	BPRC/N05	BPRC - natural channels and Best Practises of River Channels maintenance	4	4	2	3.33
9	BPDA/D05	BPDA - Best Practices on Drained Areas	0	2	2	1,33
10	Т2	Widening or removing of flood protection dikes	0	3	3	2.00

Tab. 6 List of parameters for measures in expert variant

AggregN	4				Intensity th	Intensity thresholds				Grade thresholds [%]				Grade values			
No sort_AVG	No	Measure ID	Aggregated English	Definition of the intensity criteria in English	то	Tlow	Thigh	Tmax	Grade_max	E%0	E%low	E%high	E%max	EO	Elow	Ehigh	Emax
1	1	WRAL	agriculture	Arable land area on which best practices of water retention are applied and SPU area ratio [km2/km2]	0,00	0,30	0,80	1,00	4	o	30	80	100	0,00	1,20	3,20	4,00
4	2	ER	swamps	Total area of restored (and managed) wetlands, floodplains and reconnected ox-bows and SPU area ratio [km2/km2]	0,00	0,10	0,40	1,00	5	0	60	95	100	0,00	3,00	4,75	5,00
2	3	BPDA	drainage systems	Drained area under Best DA Practices and SPU area ratio [km2/km2]	0,00	0,05	0,15	1,00	4	0	60	95	100	0,00	2,40	3,80	4,00
3	4	Τ1		Catchment area upstream of measure (polder, dry reservoir) and SPU area ratio [km2/km2]	0,00	0,05	0,20	1,00	5	0	60	95	100	0,00	3,00	4,75	5,00

AggregN	10				Intensity th	resholds				Grade th	resholds (%]		Grade val	lues		
No sort_AVG	No	Measure ID	Aggregated English	Definition of the intensity criteria in English	то	Tlow	Thigh	Tmax	Grade_max	E%0	E%low	E%high	E%max	EO	Elow	Ehigh	Emax
5	1	A02		Buffer strips density - total lenght of strips and SPU area ratio [km/km2]	0,00	0,50	2,00	6,00	3	0	60	95	100	0,00	1,80	2,85	3,00
6	2	A04	Strip cropping along contours	Arable land area on which best practices of water retention are applied and SPU area ratio [km2/km2]	0,00	0,30	0,80	1,00	3	0	30	80	100	0,00	0,90	2,40	3,00
2	з	F01		Total lenght of forest riparian buffers and doubled lenght of water courses in SPU ratio [km/km]	0,00	0,30	0,70	1,00	2	0	30	70	100	0,00	0,60	1,40	2,00
10	4	F05		Newly afforested area and SPU area ratio [km2/km2]	0,00	0,05	0,20	1,00	5	0	60	95	100	0,00	3,00	4,75	5,00
8	5	N01		Total area of basins and ponds and SPU area ratio [km2/km2]	0,00	0,01	0,10	1,00	4	o	60	95	100	0,00	2,40	3,80	4,00
9	6	N02	Wetland restoration and management	Total area of restored (and managed) wetlands, floodplains and reconnected ox-bows and SPU area ratio [km2/km2]	0,00	0,10	0,40	1,00	5	0	60	95	100	0,00	3,00	4,75	5,00
3	7	N04		Total length of re-meandered water bodies and water bodies length in SPU ratio [km/km]	0,00	0,30	0,60	1,00	2	o	30	60	100	0,00	0,60	1,20	2,00
4	8	N05	Stream bed re-naturalization	Total length of restored water bodies (natural stream bed, bank protection removal, etc) and water bodies length in SPU ratio [km/km]	0,00	0,20	0,60	1,00	2	0	20	60	100	0,00	0,40	1,20	2,00
1	9	D05		Drained area under Best DA Practices and SPU area ratio [km2/km2]	0,00	0,05	0,15	1,00	2	0	60	95	100	0,00	1,20	1,90	2,00
7	10	Т2		Active floodplain area and max (during HHQ) floodplain area in SPU ratio [km2/km2]	0,00	0,05	0,20	1,00	3	0	60	95	100	0,00	1,80	2,85	3,00

Tab. 7 List of parameters for measures in local preferences variant

For each planned measure (in SPUs), its intensity was given, expressed in accordance with the adopted intensity criterion definitions. For each SPU in the columns corresponding to individual measures, there was provided their intensity, with the value 0 - meaning no measure in the given SPU will be realized, and 1 - planning the measure with the maximum possible intensity. Intensity levels for 40 SPUs were determined for the Blh pilot catchment.

3. MODIFICATIONS TO THE STATICTOOLS.XLSX TOOL PARAMETERS

Defining the measures of the intensity and determining the thresholds for the characteristic levels of intensity (low, medium, high) was done with methodology developed by the company Pro-Woda (Tyszewski S. 2019).

Further the external expert with local knowledge and experiences in the field of assessment the efficiency of natural small retention measures was contacted and proposal of efficiency of each of measures defined in the catalogue of measures in more consultation rounds. There was assessed the potential effect of each measure within the five grade scale where 0 means no effect to particular goal and 5 means the maximum effect for particular goal. As the impact of different types of flood protection is different for small and extreme events, there was proposed to provide assessment for five groups of goals:

- low flows
- quality
- high flows small floods (Q1-Q10)
- high flows medium floods (Q10-Q50)
- high flows extreme floods (Q50-Q1000)

For the water management structures there was proposed to divide measure T3 into two subgroups:

- bigger and medium size water reservoirs
- small shallow water reservoirs and fishponds (less than 1 000 m²)

The results of Mr. Marek Čomaj from Water Research Institute are showed in the Annex.

Further the different alternatives of measures proposed for local preferences variaant were examined. These are three alternatives assuming that:

- a. Alternative a) As criteria there was used "km²/km²" instead "km/km²" for measures F01, N04 and N05 and "km/km" for measure A02. According the developed methodology for each planned measure (in SPUs), its intensity is given, expressed in accordance with the adopted intensity criterion definitions. This alternative is relevant only for some of measures proposed within local preferences variant.
- b. Alternative b) For each of the variant we tried to select only "most efficient measures" for high flows, low flows and quality
- c. Alternative c) based on results of consultation with national expert on concretizing the effects of measures for particular goals taking into account different discharges in rivers varying from Q10 up to Q1000 was created the alternative to minimize impacts of low flow conditions.

4. DESCRIPTION OF RESULTS

The scope of testing is to compare improvement of valorization results for entire pilot area or for individual SPUs. The valorization results are calculated according Valorization method developed within project, for more information see (3). Results of catchment valorization are shown in Fig. 1 where needs and possibilities of water retention are calculated for each particular SPU in the Blh pilot catchment.

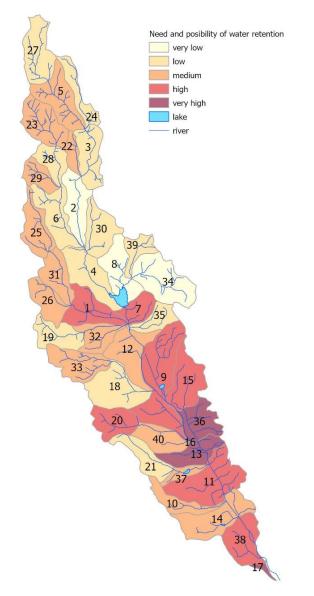


Fig. 2 Map of needs and possibilities of water retention in SPUs

4.1. For the expert variant

Type and localization of all the measures proposed for the expert variant in particular SPUs are showed in Fig. 2.

The results of the assessment were obtained from the StaticAssessment table of StaticTool.xlsm. This table contains the cumulative assessment for the entire pilot catchment and partial assessments for each group of measures and for each SPU.

The obtained results show that the highest impact on the final grade had aggregated measures - best practices on drained areas (BPDA = 30.80), then other 3 measures had significantly lower impact: Ecosystems Restoration/renaturisation of water dependent ecosystems (ER =

12.51), Polders, dry flood protection reservoirs, sediment trapping dams (T1 = 6.00) and lowest impact on the finale grade had aggregated measures - best practices for Water Retention in Agricultural Lands (WRAL = 5.78). In order to assess a single SPU while taking into account the size of the catchment area, additional calculations were made according to the following equation SPU grades * $F_SPU/\Sigma F_SPU$. The results are shown in Tab. 1.

The greatest impact on the final assessment had SPU 02, 09, 38 which are characterized by high values of SPU grade and used measures. The SPU rating which does not take into account the area shows similar results: the highest rating was obtained by SPU 38 in which measurements like ecosystems restoration and water retention in agricultural lands are planned. In a situation where the SPUs have different sizes, comparing their ratings is questionable. The final rating for the catchment also depends largely on the size of the SPUs. This variant contained a large number of measures with low efficiency, therefore the SPU assessment results are spatially dispersed and their discrepancies are small. The overall rating for this option is 1.77.

lumber of	4			Grading	g of the	Program	of Smal	Water Retention Me	asures
neasures Jumber of PUs	40		Measure No.	1	2	3	4	Catchment grade for current variant	
	Grade for	r a measure	(total by SPUs):	5,78	12,31	30,80	6,00	1,54	
No.	SPU Id	SPU name	Measure Id by User	WRAL	ER	BPDA	T1	SPU grades	SPU_grad
			F_SPU [km ²]	km2/km2	km2/km2	km2/km2	km2/km2		/ΣF_SPU
1	SPU_01		7,79	0,11	0,38		2,34	2,82	0,09341
2	SPU_02		7,33	0,02	3,09	-	2,35	5,46	0,17009
3	SPU_03		7,27		0,93			0,93	0,02887
4	SPU_04		9,36	0,21	1,48	1,77		3,47	0,13786
6	SPU_06		8,22	0,04	1,53		1,32	2,89	0,10095
7	SPU_07		4,23		1.10	2,46	100	2,46	0,04425
8	SPU_08		7,95	0,42	8			0,42	0,01408
9	SPU 09		17,20	0.01		3,28		3,29	0,24015
10	SPU_10		4,58	0,08				0,08	0,00161
11	SPU 11		13,27	0.07	1,00	0,95		2,02	0,11401
12	SPU 12		8,59	0.06		3,85	-	3,91	0,14291
13	SPU 13		5,99	0.05		3,83		3,87	0.09855
14	SPU 14	-	10,10	0,08	0,24	1,18		1,51	0,05454
15	SPU 15		8,80	0,68	-)	2,66		3,34	0,12505
16	SPU 16		0,04	-,	5	3,98		3,98	0,00070
17	SPU_17		0,62		0,12			0,12	0.00032
18	SPU_18	-	10,29	0,00	-)	-		0,00	0,00016
20	SPU 20		6,17	0.86				0,86	0.02261
21	SPU_21		5,84	0,40				0,40	0,00997
22	SPU 22		2,29	-,		0.16		0,16	0.00155
25	SPU_25		6,82	0,20	0,71	0,20		0,91	0,02625
26	SPU 26		5,61	0,08	-,	- 6		0,08	0.00195
27	SPU_27		8,46	-,	0,03	. S		0,03	0,00113
28	SPU 28		4,54		0.62			0,62	0.01201
30	SPU_20		7,26		0,15	-		0,15	0.00465
31	SPU_31		6,06	0,17	0,20			0,38	0.00970
32	SPU_32		5,20	0,17	0,20			0,41	0,00897
33	SPU_32		7,87	0,41		·		0,18	0.00618
34	SPU 34	-	11,57	0,15	-			0,21	0,01028
36	SPU_34		6,63	1,37	-	0.09		1,46	0,01028
37	SPU_30		2,14	1,27	-5	1,19	-	1,40	0,04120
38	SPU_37				1,82	3.87		5,70	and the second se
39			7,73	0.05	1,02	3,87			0,18726
40	SPU_39 SPU_40		3,67	0,05		1,50		0,06	0,03704

Tab. 1. Assessment of the effectiveness of the expert variant

Also alternative b) mentioned in the chapter 3 was examined here. In Tab 2 we tried to propose just those measures, which should improve water quality. Measures were selected based on highest impact grade on quality - WRAL, ER. The overall rating for this option is 0.63. In Tab 3 we tried to propose just those measures, which should improve high flows. Measures were selected based on highest impact grade on high flow - ER, T1. The overall rating for this option is 1.38. In Tab 4 we tried to propose just those measures, which should improve lowf lows. Measures were selected based on highest impact grade on low flow, in this case just one measure - BPDA was selected. The overall rating for this option is 2.25.

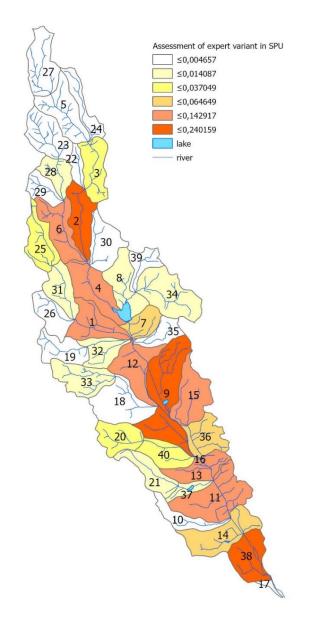


Fig. 3 Map of assessment of the expert variant at the SPU level

Number of measures	4			Grading	g of the	Program	n of Sma	ll Wate	r Retent	ion Measures		
Number of SPUs	27		Measure No.	1	2	3	4				Catchment grade for current variant	
		Grade for a measure	(total by SPUs):	5,78	11,38	0,00	0,00				0,63	
No.	SPU Id	SPU name	Measure Id by User	WRAL	ER	BPDA	T1				SPU grades	SPU_grade s * F_SPU
			F_SPU [km ²]	km2/km2	km2/km2	km2/km2	km2/km2					/ΣF_SPU
1	SPU_01		7,79	0,11	0,38						0,48	0,02
2	SPU_02		7,33	0,02	3,09						3,11	0,11
3	SPU_04		9,36	0,21	1,48						1,69	0,08
4	SPU_06		8,22	0,04	1,53						1,57	0,06
5	SPU_08		7,95	0,42							0,42	0,02
6	SPU_09		17,20	0,01							0,01	0,00
7	SPU_10		4,58	0,08							0,08	0,00
8	SPU_11		13,27	0,07	1,00						1,06	0,07
9	SPU_12		8,59	0,05							0,06	0,00
10	SPU_13		5,99	0,05							0,05	0,00
11	SPU_14		10,10	0,08	0,24						0,32	0,02
12	SPU_15		8,80	0,68							0,68	0,03
13	SPU_17		0,62		0,12						0,12	0,00
14	SPU_18		10,29	0,00							0,00	0,00
15	SPU_20		6,17	0,86							0,86	0,03
16	SPU_21		5,84	0,40							0,40	0,01
17	SPU_25		6,82	0,20	0,71						0,91	0,03
18	SPU_26		5,61	0,08							0,08	0,00
19	SPU_27		8,46		0,03						0,03	0,00
20	SPU_28		4,54		0,62						0,62	0,01
21	SPU_30		7,26		0,15						0,15	0,01
22	SPU_31		6,06	0,17	0,20						0,38	0,01
23	SPU_32		5,20	0,41							0,41	0,01
24	SPU_33		7,87	0,18							0,18	0,01
25	SPU_34		11,57	0,21							0,21	0,01
26	SPU_36		6,63	1,37							1,37	0,04
27	SPU_38		7,73		1,82						1,82	0,07

Tab. 2. Assessment of the effectiveness of the expert variant for quality improvement

Tab. 3. Assessment of the effectiveness of the expert variant for improvement of high flow conditions

Number of measures	4			Grading	g of the I	Program	n of Sma	ll Wate	r Retent	ion Mea	asures		
Number of SPUs	14		Measure No.	1	2	3	4					Catchment grade for current variant	
		Grade for a measure	(total by SPUs):	0,00	12,31	0,00	6,00					1,38	
No.	SPU Id	SPU name	Measure Id by User	WRAL	ER	BPDA	T1					SPU grades	SPU_grade s * F_SPU
			F_SPU [km ²]	km2/km2	km2/km2	km2/km2	km2/km2						/ΣF_SPU
1	SPU_01		7,79		0,38		2,34					2,71	0,20
2	SPU_02		7,33		3,09		2,35					5,44	0,38
3	SPU_03		7,27		0,93							0,93	0,06
4	SPU_04		9,36		1,48							1,48	0,13
5	SPU_06		8,22		1,53		1,32					2,85	0,22
6	SPU_11		13,27		1,00							1,00	0,13
7	SPU_14		10,10		0,24							0,24	0,02
8	SPU_17		0,62		0,12							0,12	0,00
9	SPU_25		6,82		0,71							0,71	0,05
10	SPU_27		8,46		0,03							0,03	0,00
11	SPU_28		4,54		0,62							0,62	0,03
12	SPU_30		7,26		0,15							0,15	0,01
13	SPU_31		6,06		0,20							0,20	0,01
14	SPU_38		7,73		1,82							1,82	0,13

Number of measures	4			Grading	g of the	Program	n of Sma	ll Wate	r Retent	ion Mea	sures		
measures Number of SPUs	14		Measure No.	1	2	3	4					Catchment grade for current variant	
		Grade for a measure	(total by SPUs):	0,00	0,00	30,80	0,00					2,25	
No.	SPU Id	SPU name	Measure Id by User	WRAL	ER	BPDA	T1					SPU grades	SPU_grade s * F_SPU
			F_SPU [km ²]	km2/km2	km2/km2	km2/km2	km2/km2						/ΣF_SPU
1	SPU_04		9,36			1,77						1,77	0,16
2	SPU_07		4,23			2,46						2,46	0,10
3	SPU_09		17,20			3,28						3,28	0,55
4	SPU_11		13,27			0,96						0,96	0,12
5	SPU_12		8,59			3,85						3,85	0,32
6	SPU_13		5,99			3,83						3,83	0,22
7	SPU_14		10,10			1,18						1,18	0,12
8	SPU_15		8,80			2,66						2,66	0,23
9	SPU_16		0,04			3,98						3,98	0,00
10	SPU_22		2,29			0,16						0,16	0,00
11	SPU_36		6,63			0,09						0,09	0,01
12	SPU_37		2,14			1,19						1,19	0,02
13	SPU_38		7,73			3,87						3,87	0,29
14	SPU_40		5,79			1,50						1,50	0,09

Tab. 4. Assessment of the effectiveness of the expert variant for improvement of low flow conditions

Based on the overall values of calculated grades it can be assumed that when selecting only measures to improve low flow conditions the effect for whole pilot area will be higher (2.25 to 1,77).

4.2. For the variant of local preferences

Type and localization of all the measures proposed for the expert variant in particular SPUs are showed in Fig. 2.

The results of the local preferences variant assessment are also presented in the form of a table (Tab. 5) and map (Fig. 4). In this variant, wetland restoration and management (N02 = 13.56) and widening or removing of flood protection dikes (T02 = 10.36) have the greatest impact on the final score. Less impactful measures are polders, dry flood protection reservoirs, sediment trapping dams (T01 = 7.15) and land use conversion (F05 = 4.17). The impact of other measures is negligible. In order to assess a single SPU while taking into account the size of the catchment area, additional calculations were made according to the following equation SPU grades * F_SPU/ Σ F_SPU. The results are shown

The greatest impact on the final assessment had SPU 12 and 09. SPUs assessment without taking into account the area gives different results, and in this case the SPUs 12, 16, 13, 17 dominate with a score of 12 = 6.28, 16 = 5.9, 13 = 5.28, 17 = 4.57. These variants included a small number of measures with high efficiency which caused the SPUs assessment results to be cumulated only in 4 SPUs (12, 16, 13, 17) and divergences between them and others are very significant. The overall rating for this variant is 1.68.

Number of measures	10			Grading	g of the I	Progran	n of Smal	ll Water	Retent	ion Mea	asures				
Number of SPUs	20		Measure No.	1	2	3	4	5	6	7	8	9	10	Catchment grade for current variant	
	Grade for	a measure	(total by SPUs):	0,70	0,93	2,16	4,17	1,77	13,56	1,08	0,26	0,46	10,40	1,63	
No.	SPU Id	SPU name	Measure Id by User	A02	A04	F01	F05	N01	N02	N04	N05	D05	T2	SPU grades	SPU_grade s * F_SPU
			F_SPU [km ²]	km/km2	km2/km2	km/km	km2/km2	km2/km2	km2/km2	km/km	km/km	km2/km2	km2/km2		/ Z F_SPU
1	SPU_01		7,79	İ		0,02			0,02	0,01			0,02	0,07	0,003680
2	SPU_02		7,33						1,66		0,02			1,68	0,089060
4	SPU_04		9,36			1		2			0,01			0,01	0,000792
6	SPU_06		8,22						1,39		0,23			1,62	0,096037
7	SPU_07		4,23			0,08			0,47	0,04			0,57	1,15	0,035213
9	SPU_09		17,20			0,34	1,11		0,39	0,17		0,27	0,46	2,74	0,341066
10	SPU_10		4,58		8	0,01		2	0,01	0,00	2		0,02	0,04	0,001414
11	SPU_11		13,27		a 1	0,23			0,46	0,11	0	·	0,55	1,35	0,129282
12	SPU_12		8,59			0,40	3,05	0,13	1,24	0,20		0,19	1,49	6,71	0,416817
13	SPU_13		5,99		0,69	0,14	96		0,63	0,07	1	0.00	0,76	2,29	0,099195
14	SPU_14		10,10		100	0,11		2	0,29	0,05	101		0,35	0,81	0,059088
15	SPU_15		8,80			0,07			0,17	0,04		0,00	0,20	0,48	0,030268
16	SPU_16		0,04			0,05			3,12	0,02	ĵ.		2,30	5,49	0,001650
17	SPU_17		0,62			0,15			2,28	0,07			1,98	4,49	0,020229
21	SPU_21		5,84		0,01						ŝ			0,01	0,000509
35	SPU_35		4,08	_	a 1	0,01		1,63	0,00	0,00			0,00	1,64	0,048437
36	SPU_36		6,63			0,26			0,44	0,13		0,00	0,53	1,36	0,065210
37	SPU_37		2,14		0,18					201	1	a - 22 - 22		0,18	0,002822
38	SPU_38		7,73	0,70	103	0,30		3	0,98	0,15	121	1	1,17	3,31	0,184831
40	SPU_40		5,79		0,04	0,00			0,00	0,00			0,00	0,05	0,001963

Tab. 5. Assessment of the effectiveness of the local preferences variant

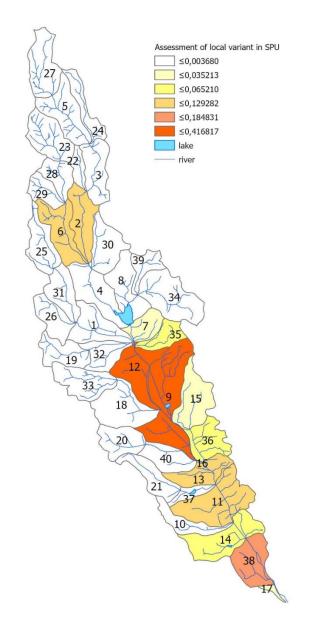


Fig 4 Map of assessment of the local preferences variant at the SPU level

Also alternative b) mentioned in the chapter 3 was examined. In Tab. 6 we tried to propose just those measures, which should improve water quality. Measures were selected bases on highest impact grade on quality - A02, F01, F05, N02, A04, T2. The overall rating for this option is 1.55. In Tab 7 we tried using just those measure, which should improve on high flows. Measures were selected based on highest impact grade on high flow - F05, N01, N02, D05, A04, T2. The overall rating for this option is 1.68. In Tab 8 we tried to propose just those measures, which should improve low flows. Measures were selected based on highest impact grade on highest impact grade on low flow, in this case just measures F05, N01, D05. The overall rating for this option is 1.31.

Number of measures	10	-		Gradin	g of the I	Program	n of Sma	ll Water	Retent	ion Mea	asures	0 0,		and the state of the state	
Number of SPUs	19		Measure No.	1	2	3	4	5	6	7	8	9	10	Catchment grade for current variant	
	Grade for	a measure	(total by SPUs):	0,70	0,93	2,16	4,17	0,00	13,56	0,00	0,00	0,00	10,40	1,54	
No.	SPU Id	SPU name	Measure Id by User	A02	A04	F01	F05	N01	N02	N04	N05	D05	T2	SPU grades	SPU_grade s * F_SPU
			F_SPU [km ²]	km/km2	km2/km2	km/km	km2/km2	km2/km2	km2/km2	km/km	km/km	km2/km2	km2/km2		/ I F_SPU
1	SPU_01		7,79			0,02			0,02				0,02	0,06	0,003476
2	SPU_02		7,33						1,66					1,66	0,094349
6	SPU_06		8,22						1,39					1,39	0,088374
7	SPU_07		4,23		2	0,08		2	0,47		2		0,57	1,11	0,036491
9	SPU_09		17,20			0,34	1,11		0,39				0,46	2,30	0,307168
10	SPU_10		4,58			0,01			0,01				0,02	0,04	0,001378
11	SPU_11		13,27			0,23			0,46				0,55	1,23	0,127025
12	SPU_12		8,59		S 8	0,40	3,06		1,24		2		1,49	6,19	0,412454
13	SPU_13		5,99		0,69	0,14			0,63				0,76	2,22	0,103134
14	SPU_14		10,10			0,11			0,29				0,35	0,75	0,059101
15	SPU_15		8,80			0,07			0,17				0,20	0,44	0,029844
16	SPU_16		0,04		19 - 19 - 19 - 19 - 19 - 19 - 19 - 19 -	0,05		2	3,12		10		2,30	5,47	0,001762
17	SPU_17		0,62			0,15			2,28				1,98	4,42	0,021339
21	SPU_21		5,84		0,01									0,01	0,000545
35	SPU_35		4,08			0,01			0,00				0,00	0,01	0,000259
36	SPU_36		6,63		5	0,26			0,44		2		0,53	1,23	0,063325
37	SPU_37		2,14		0,18									0,18	0,003027
38	SPU_38		7,73	0,70		0,30			0,98				1,17	3,15	0,189123
40	SPU_40		5,79		0,04	0,00			0,00			1	0,00	0,05	0,002053

Tab. 6. Assessment of the effectiveness of the local preferences variant for quality improvement

Tab. 7. Assessment of the effectiveness of the local preferences variant for improvement of high flow conditions

Number of	10			Gradin	g of the l	Progran	n of Sma	ll Water	Retent	ion Mea	asures				
measures Number of SPUs	17		Measure No.	1	2	3	4	5	6	7	8	9	10	Catchment grade for current variant	
	Grade for	a measure	(total by SPUs):	0,00	0,00	0,00	4,17	1,77	13,56	0,00	0,00	0,00	10,40	1,46	
No.	SPU Id	SPU name	Measure Id by User	A02	A04	F01	F05	N01	N02	N04	N05	D05	T2	SPU grades	SPU_grade s * F_SPU
	_		F_SPU [km ²]	km/km2	km2/km2	km/km	km2/km2	km2/km2	km2/km2	km/km	km/km	km2/km2	km2/km2		/ E F_SPU
1	SPU_01		7,79	1					0,02				0,02	0,04	0,002700
2	SPU_02		7,33						1,65					1,66	0,100573
6	SPU_06	1	8,22			·,			1,39		1	·		1,39	0,094204
7	SPU_07		4,23					3	0,47		1		0,57	1,04	0,036173
9	SPU_09		17,20				1,11		0,39				0,45	1,96	0,278632
10	SPU_10		4,58						0,01				0,02	0,03	0,001173
11	SPU_11	1	13,27)		· · · · · · · · · · · · · · · · · · ·	0,45		-		0,55	1,01	0,110589
12	SPU_12		8,59				3,05	0,13	1,24		i i		1,49	5,93	0,420958
13	SPU_13		5,99						0,63				0,76	1,39	0,058658
14	SPU_14		10,10						0,29				0,35	0,65	0,053884
15	SPU_15		8,80						0,17			· · · · · · · · · · · · · · · · · · ·	0,20	0,37	0,026704
16	SPU_16		0,04		5. J			3	3,12		1	1	2,30	5,42	0,001863
17	SPU_17		0,62						2,28				1,98	4,27	0,021983
35	SPU_35		4,08					1,63	0,00				0,00	1,63	0,054985
36	SPU_36	1	6,63			·		9—30——3	0,44		1		0,53	0,97	0,053398
38	SPU_38	1	7,73		6			2	0,98				1,17	2,15	0,137526
40	SPU_40		5,79						0,00				0,00	0,00	0,000120

Number of measures	10			Grading	g of the I	Program	n of Sma	ll Water	Retent	ion Mea	sures				
Number of SPUs	3		Measure No.	1	2	3	4	5	6	7	8	9	10	Catchment grade for current variant	
	Grade for	r a measure	(total by SPUs):	0,00	0,00	0,00	4,17	1,77	0,00	0,00	0,00	0,00	0,00	1,78	
No.	SPU Id	SPU name	Measure Id by User	A02	A04	F01	F05	N01	N02	N04	N05	D05	T2	SPU grades	SPU_grade s * F_SPU
			F_SPU [km ²]	km/km2	km2/km2	km/km	km2/km2	km2/km2	km2/km2	km/km	km/km	km2/km2	km2/km2		/ E F_SPU
9	SPU_09		17,20				1,11				0			1,11	0,639183
12	SPU_12		8,59				3,06	0,13						3,20	0,920293
35	SPU_35	2	4,08		3	1		1,63			1			1,63	0,222692

Based on the overall values of calculated grades it can be assumed that the effect for whole pilot area is the highest when taking into account all of proposed measures (1.68).

Results of assessments for all three phenomena are shown in the Fig, 5, 6 and 7.

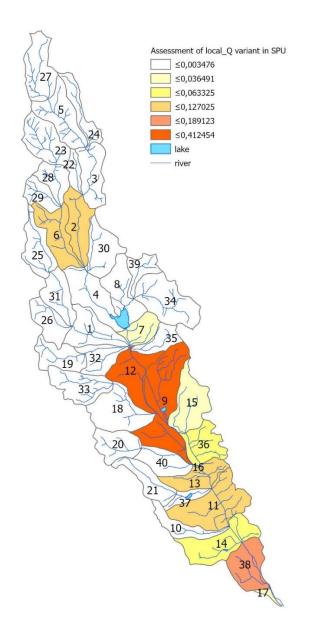


Fig. 5 Map of assessment of the effectiveness of the local preferences variant for quality improvement

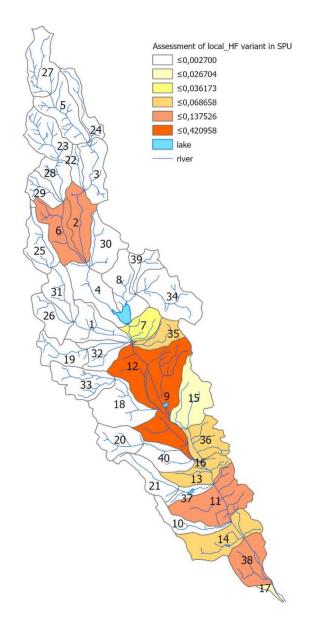


Fig. 6 Map of assessment of the effectiveness of the local preferences variant for improvement of high flow conditions

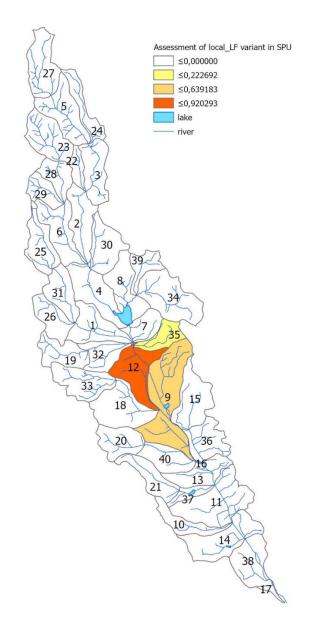


Fig. 7 Map of assessment of the effectiveness of the local preferences variant for improvement of low flow conditions

Also alternative a) mentioned in the chapter 3 taking into consideration the change of criteria from "km/km" and "km/km²" to "km²/km²" was examined here. Results and chosen criteria are shown in the tables Tab. 9 and tab. 10 and assessments are shown in Fig. 8 and 9. Based on the reached grading (1.41, 1,37) it seems to be even less efficient alternative as calculated above, so the change of criteria was wrong and we have to keep criteria proposed by project.

Number of measures	10	2		Grading	g of the	Program	n of Sma	ll Wate	Retent	ion Mea	asures				
Number of SPUs	20	6	Measure No.	1	2	3	4	5	6	7	8	9	10	Catchment grade for current variant	<u></u>
	Grade for	a measure	(total by SPUs):	0,01	0,93	0,73	4,17	1,77	13,56	0,73	0,02	0,46	10,40	1,41	
No.	SPU Id	SPU name	Measure Id by User	A02	A04	F01	F05	N01	N02	N04	N05	D05	T2	SPU grades	SPU_grade s*F_SPU
			F_SPU [km ²]	km2/km2	km2/km2	km2/km2	km2/km2	km2/km2	km2/km2	km2/km2	km2/km2	km2/km2	km2/km2	1	/ E F_SPU
1	SPU_01		7,79			0,00			0,02	0,00			0,02	0,04	0,002505
2	SPU_02		7,33						1,66		0,01			1,67	0,088270
4	SPU_04		9,36		2			1	a 60 - 5		0,00	8		0,00	0,000087
6	SPU_06	<u></u>	8,22		3			ě.	1,39		0,01			1,40	0,083038
7	SPU_07		4,23			0,03			0,47	0,03	20		0,57	1,10	0,033556
9	SPU_09		17,20		0	0,03	1,11		0,39	0,03	0	0,27	0,46	2,28	0,283449
10	SPU_10		4,58		2.	0,00			0,01	0,00			0,02	0,03	0,001088
11	SPU_11	5	13,27		8	0,03		S.	0,46	0,03	3		0,55	1,07	0,102588
12	SPU_12		8,59	_		0,08	3,06	0,13	1,24	0,08		0,19	1,49	6,28	0,390020
13	SPU_13		5,99		0,69	0,04			0,63	0,04			0,76	2,17	0,093717
14	SPU_14		10,10		21. 22	0,02		1	0,29	0,02		8	0,35	0,68	0,049986
15	SPU_15	5	8,80		1	0,01		E.	0,17	0,01	8	0,00	0,20	0,39	0,024982
16	SPU_16		0,04		10	0,24			3,12	0,24	20		2,30	5,90	0,001775
17	SPU_17		0,62		0	0,15			2,28	0,15			1,98	4,57	0,020599
21	SPU_21		5,84		0,01							1		0,01	0,000509
35	SPU_35		4,08		8	0,00		1,63	0,00	0,00	3		0,00	1,63	0,048093
36	SPU_36		6,63	_		0,03			0,44	0,03		0,00	0,53	1,03	0,049536
37	SPU_37		2,14		0,18									0,18	0,002822
38	SPU_38		7,73	0,01	84 - 92	0,07		1	0,98	0,07		-	1,17	2,29	0,127994
40	SPU 40	2	5,79		0.04	0.00		8	0,00	0.00	8		0,00	0,04	0,001823

Tab. 9. Assessment of the effectiveness of the local preferences variant with changed criteria

Tab. 10. Assessment of the effectiveness of the local preferences variant with changed criteria for quality improvement

Number of measures	10	85		Grading	g of the l	Program	n of Sma	ll Water	Retent	ion Mea	sures	<u> </u>			
Number of SPUs	19	с. 21	Measure No.	1	2	3	4	5	6	7	8	9	10	Catchment grade for current variant	
	Grade for	r a measure	(total by SPUs):	0,01	0,93	0,73	4,17	0,00	13,56	0,00	0,00	0,00	10,40	1,37	
No.	SPU Id	SPU name	Measure Id by User	A02	A04	F01	F05	N01	N02	N04	N05	D05	T2	SPU grades	SPU_grade s * F_SPU
			F_SPU [km ²]	km2/km2	km2/km2	km2/km2	km2/km2	km2/km2	km2/km2	km2/km2	km2/km2	km2/km2	km2/km2		/ Z F_SPU
1	SPU_01		7,79			0,00		10	0,02				0,02	0,04	0,002610
2	SPU_02		7,33						1,66					1,66	0,094349
6	SPU_06		8,22						1,39					1,39	0,088374
7	SPU_07	3	4,23			0,03		3	0,47	() (0,57	1,07	0,034963
9	SPU_09	24	17,20			0,03	1,11	36	0,39	,			0,46	1,99	0,264824
10	SPU_10		4,58			0,00		0	0,01				0,02	0,03	0,001134
11	SPU_11		13,27	l l		0,03			0,45	1			0,55	1,04	0,105889
12	SPU_12	100	8,59			0,08	3,06	3	1,24				1,49	5,88	0,391457
13	SPU_13	24	5,99		0,69	0,04		46	0,63	,,	_		0,76	2,12	0,098566
14	SPU_14		10,10			0,02			0,29				0,35	0,67	0,052082
15	SPU_15		8,80			0,01			0,17				0,20	0,38	0,025810
16	SPU_16	1	0,04			0,24		3	3,12				2,30	5,66	0,001825
17	SPU_17		0,62			0,15		36	2,28	,)			1,98	4,42	0,021358
21	SPU_21		5,84		0,01			0						0,01	0,000545
35	SPU_35		4,08		2.00	0,00			0,00				0,00	0,00	0,000013
36	SPU_36	1	6,63	1		0,03		3	0,44			2	0,53	1,00	0,051611
37	SPU_37	4	2,14		0,18			46		,,	_			0,18	0,003027
38	SPU_38		7,73	0,01		0,07		0	0,98				1,17	2,22	0,133374
40	SPU 40	22	5,79	- 93 - 94	0,04	0,00		84	0,00				0,00	0,04	0,001951

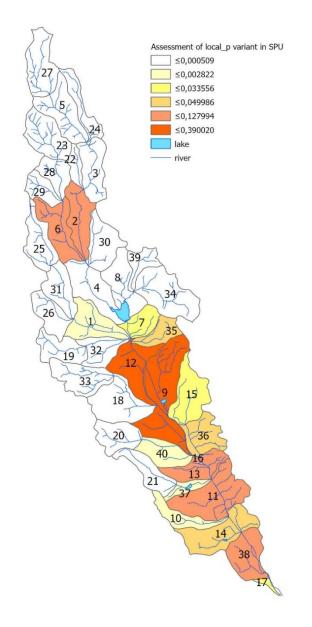


Fig. 8 Map of assessment of the local preferences variant with changed criteria at the SPU level

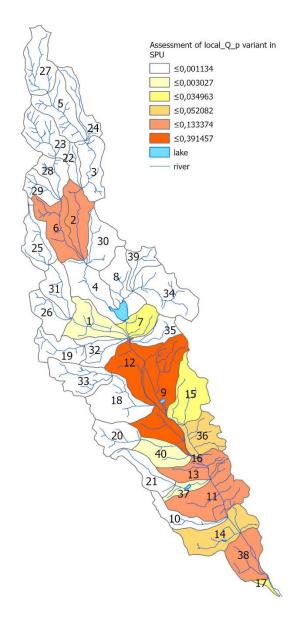


Fig. 9 Map of assessment of the effectiveness of the local preferences variant with changed criteria for quality improvement

Also alternative c) mentioned in the chapter 3 based on the consultation with an external expert the variant with the most effective measures for minimizing the negative effects of low flow conditions were calculated. Even if the measures selected by national expert were not proposed in local preferences variant. The results are shown in Tab. 11. Intensities and grades were kept the same as proposed by project consortia.

Tab. 11. Assessment of the effectiveness of the local preferences variant (measures proposed by external expert) for improvement of low flow condition

	Number of	8	1		Grading	of the	Program	n of Smal	ll Water	Retent	ion Mea	sures	
	measures Number of						-	1				-	Catchment grade for current
3	SPUs	40		Measure No.	1	2	3	4	5	6	7	8	variant
4		Grade for	r a measure ((total by SPUs):	0,00	13,07	0,00	4,86	12,14	0,00	0,00	0,00	0,79
5	No.	SPU Id	SPU name	Measure Id by User	WRAL	F01	KF	F05	F14	N02	N13	D04	SPU grades
6				F_SPU [km ²]	km2/km2	km/km	-	km2/km2	km/km	km2/km2	km2/km2	km2/km2	
7	1	SPU_01		7,79				4,86	0,22				5,08
8	2	SPU_02		7,33			0,00						0,00
9	3	SPU_03		7,27					0,06				0,06
10	4	SPU_04		9,36		0,14			0,44				0,58
11	5	SPU_05		9,00					0,34				0,34
12	6	SPU_06		8,22					0,09				0,09
13	7	SPU_07		4,23					0,16				0,16
14	8	SPU_08		7,95		0,27			0,41				0,69
15	9	SPU_09		17,20		0,20			0,10				0,30
16	10	SPU_10		4,58		1,17			0,30				1,47
17	11	SPU_11		13,27		2,00			0,34				2,34
18	12	SPU_12		8,59					0,38				0,38
19	13	SPU_13		5,99					0,44				0,44
20	14	SPU_14		10,10		0,00			0,16				0,16
21	15	SPU_15		8,80		0,64			0,15				0,79
22	16	SPU_16		0.04		0.01			0.13				0.15
23	17	SPU_17		0,62		0,49			0,24				0,73
24	18	SPU_18		10,29		0,76			0,41				1,17
25	19	SPU_19		6,04					0,15				0,15
26	20	SPU_20		6,17		0,06			0,19				0,25
27	21	SPU_21		5,84		0,73			0,50				1,23
28	_	SPU 22	·	2.29		-,	-	-	0,52			-	0,52
29		SPU 23		8,17			-	-	0,32	-			0,28
30		SPU_24		4,60		0.11	-	-	0,28			-	0,54
31	25	SPU_25		6.82		0,11	-		0,10			-	0,20
32		SPU_26		5,61		0,10			0,10				1,41
33	27	SPU_27		8,46		0.01	-		0,30			-	0,27
34		SPU_28		4,54		0,99	-		0,20				1.15
35		SPU 29		3,87		0,99			0,17				0,58
36		SPU_29 SPU_30		7,26		0,26	-	-	0,58	-	-		0,38
37	31	SPU_30 SPU_31		6,06		1,33	-	-	0,12	-	-		2,01
38		SPU_31 SPU_32		5,20		0,67		-	0,68	-			1,34
39	33	SPU_32 SPU_33		7,87		0,56			0,07				0,68
40		SPU_34		11,57		0,38			0,12				0,54
40	35	SPU_34 SPU_35		4.08		0,27	-	-	0,27	-	-		0,54
41	36	SPU_35 SPU_36		6,63		1,08	-	-	0,25	-			1,68
42	35	SPU_36 SPU_37		2,14		0,24		-	0,60	-			0,52
43	37			7,73	-	0,24	-		0,28	-			
44	38	SPU_38				0.02							0,37
		SPU_39		3,67		0,03			0,14	-		-	0,17
46	40	SPU_40		5,79		0,00			0,59				0,59

The total grade for area reached is 0.79 which is less than in calculations above. It seems to be not sufficient and further proposals of extents of selected measures should be examined.

4.3. Comparison of variants

The differences between variants result mainly from the spatial distribution, structure and number of planned measures. The expert variant is characterized by a smaller number of measures spread over an area of catchment (4 measure types and there of 1 aggregated measure spread over 35 SPUs). On the contrary, the local variant contains 10 measure types and none of aggragated measures placed in 20 SPUs. Despite these large differences, the assessment ratio of the final score of the expert to local variant is 1.05 (1.77/1.68). Larger differences are noticeable after comparing the spatial distribution, which is shown in Fig. 13 as a difference between local and expert variants. The map shows that the local variant dominates in the middle part of the catchment.

Additionally, by carrying out a visual comparison of both variants (Fig. 14) and the valorization map generated via valorization tool FroGIS (Fig. 2), it can be concluded that introducing the expert variant will reduce the need for water retention in particularly sensitive

areas, except upper parts of the catchment. In the upper parts of the catchment, the need of water retention comes out of idea to protect from floods lower parts of the catchment, which are more inhabited (municipalities). These seems to be in correlation with dynamic modelling results for pilot catchment, for more information see (11). On the other hand, in the local variant, in most cases, it would improve areas with low water retention needs.

Maps of comparison of expert and local preferences variants were created by using the method of natural breaks for six classes.

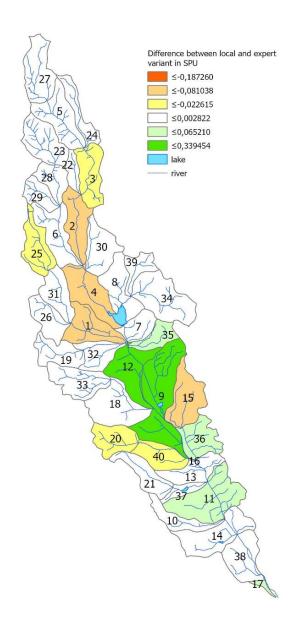


Fig. 10 Map of difference between local preferences and expert variant (green color shows dominance of local variant and red shows the opposite)

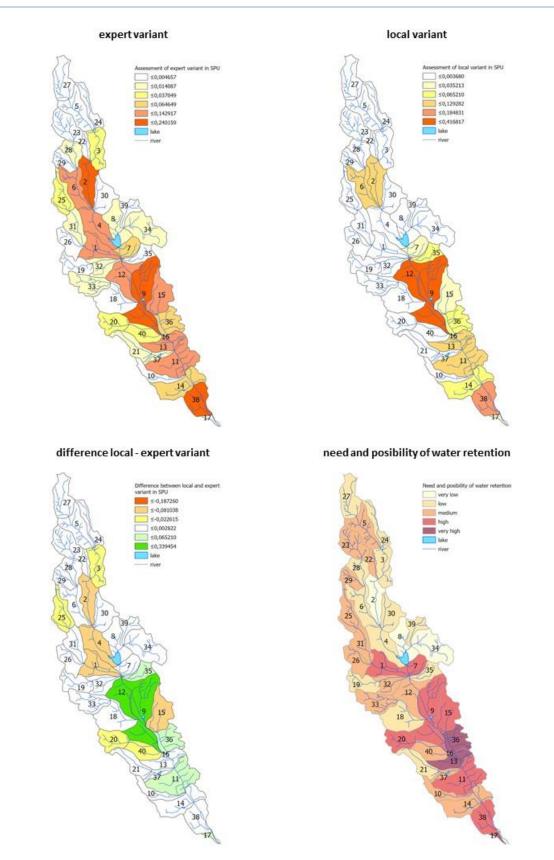


Fig. 11 Visual comparison of local preferences and expert variant assessments with the map of valorisation of needs and water retention possibilities

In the following maps there are visualised differences between expert and local preferences variants analysed within alternative a) where criteria of some measures were changed and alternative b) where only "most efficient measures" for particular goals were selected as described in the chapter 3.

<u>Alternative b)</u> - for each of the local preferences variant we have selected only "most effective measures" for particular goal as high flows, low flows and quality. The differences to expert variant are shown in Fig. 15, 16 and 17.

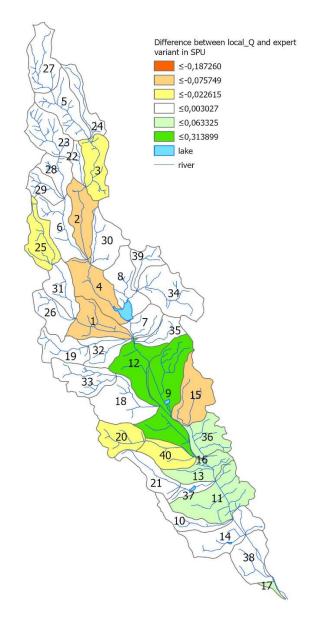


Fig. 12 Map of difference between local preferences variant for quality improvement and expert variant (green color shows dominance of local variant and red shows the opposite)

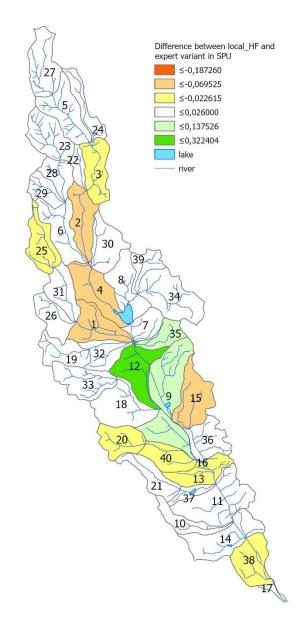


Fig. 13 Map of difference between local preferences variant for improvement of high flow conditions and expert variant (green color shows dominance of local variant and red shows the opposite)

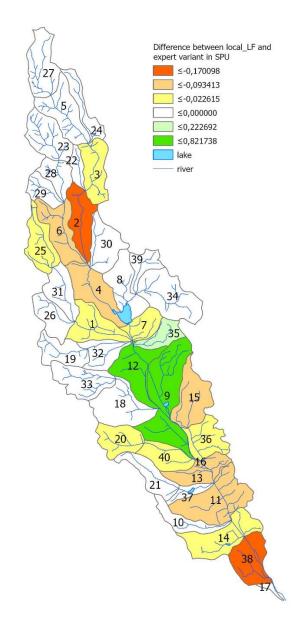


Fig. 14 Map of difference between local preferences variant for improvement of low flow conditions and expert variant (green color shows dominance of local variant and red shows the opposite)

Also based on visual comparison of above showed figures for differences between expert variant and alternatives of local preferences variant, it can be assumed that selection of measures relevant for particular goal (low flow, high flow, quality) is most relevant for low flow conditions.

<u>Alternative a)</u> - where the definition of intensity criteria for some of measures was changed from "km/km²" and "km/km" to "km²/km²". This is relevant only for some of measures proposed

within local preferences variant. See results of differences to expert variant in the following figures Fig. 18, 19, 20 and 21.

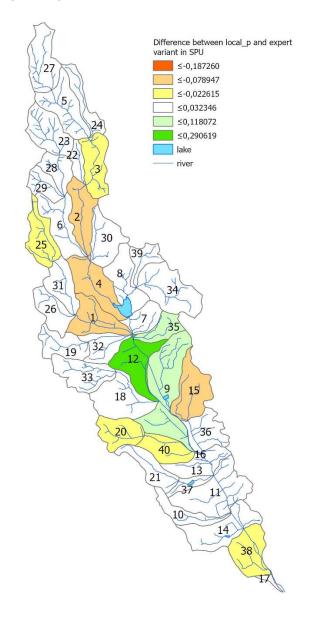


Fig. 15 Map of difference between local preferences with changed criteria and expert variant (green color shows dominance of local variant and red shows the opposite)

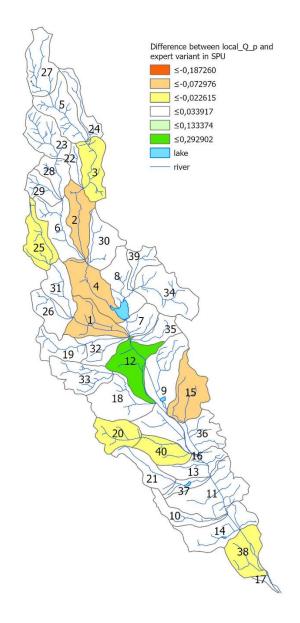


Fig. 16 Map of difference between local preferences variant with changed criteria for quality improvement and expert variant (green color shows dominance of local variant and red shows the opposite)

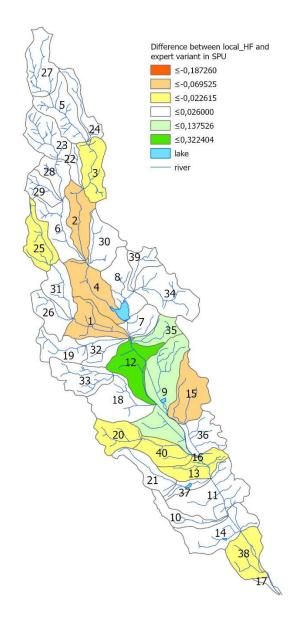


Fig. 17 Map of difference between local preferences variant with changed criteria for improvement of high flow conditions and expert variant (green color shows dominance of local variant and red shows the opposite)

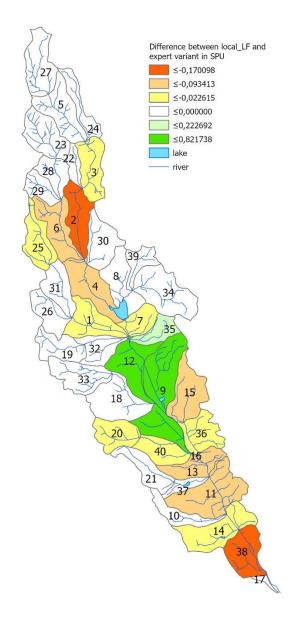


Fig. 18 Map of difference between local preferences variant with changed criteria for improvement of low flow conditions and expert variant (green color shows dominance of local variant and red shows the opposite)

Based on visual comparison of above showed figures for differences between expert variant and alternatives of local preferences variant with changed criteria, the trend is the same as for alternatives of local preferences variant where the most relevant criteria are chosen. Differences are obvious mainly for variant of low flow conditions.

5. CONCLUSIONS

Based on the testing of the StaticMethod and StaticTool.xlsm it can be concluded:

- StaticTool.xlsm seems to work properly even when using the pre-defined criteria and their values
- variant with proposed measures in the upper part of catchment to reduce flood impacts in the lower parts of catchments (municipalities) dynamic modelling results
- to calculate parameters for proposed measures is quite time consuming but feasible

- results in the tool are quite easy to interpreted even for non expert but a short guide how to do it and how to create the map will be efficient

- with the results obtained and after preparing the maps it was easy to compare particular alternatives of natural small water retention measures

6. RECOMMENDATIONS

Based on the experiences with testing of the StaticMethod and StaicTool.xlsm it can be assumed:

- Content related:
 - \circ How to interprate Grades is necessary to explain/to add somewhere in the tool
 - As intensities and maximum grades definitions are country/region/catchment characteristics relevant, it will be efficient to include some recommendations for future users of the tool if gained during the testing by PPs
 - As it is not necessary to use aggregated measure codes to run calculations, it should be mentioned somewhere in the methodology, that calculations will run anyway.
- Functionalities:
 - SK translation of names of aggregated measures is missing. We see it as valuable information for national stakeholders, who will use the tool.
 - SK translations of definitions of intensities criteria are missing. We see it as valuable information for national stakeholders, who will use the tool.
 - It was experienced during the testing that "grey fields" which should be filled-in automatically was necessary to overwrite manually.
 - For local national stakeholders, it would be efficient to provide description of Methodology on static assessment of cumulative effect of N(S)WRM at the river basin scale and of Manual on how to work with Static tool in national languages. It will facilitate wider use of project deliverables.

7. LIST OF FIGURES

Fig.	1 Type and localization of measures proposed for expert variant and for local preferences variant
Fig. Fig	2 Map of needs and possibilities of water retention in SPUs
Fig.	6 Map of assessment of the effectiveness of the local preferences variant for improvement of high flow conditions
Fig.	7 Map of assessment of the effectiveness of the local preferences variant for improvement of low flow conditions
Fig.	 8 Map of assessment of the local preferences variant with changed criteria at the SPU level . 26 9 Map of assessment of the effectiveness of the local preferences variant with changed criteria for quality improvement
Fig.	13 Map of difference between local preferences and expert variant (green color shows dominance of local variant and red shows the opposite)
Fig.	14 Visual comparison of local preferences and expert variant assessments with the map of valorisation of needs and water retention possibilities
Fig.	15 Map of difference between local preferences variant for quality improvement and expert variant (green color shows dominance of local variant and red shows the opposite)
Fig.	16 Map of difference between local preferences variant for improvement of high flow conditions and expert variant (green color shows dominance of local variant and red shows the opposite) 32
Fig.	17 Map of difference between local preferences variant for improvement of low flow conditions and expert variant (green color shows dominance of local variant and red shows the opposite) 33
-	 18 Map of difference between local preferences with changed criteria and expert variant (green r shows dominance of local variant and red shows the opposite)
Fig.	the opposite)
Fig.	21 Map of difference between local preferences variant with changed criteria for improvement of low flow conditions and expert variant (green color shows dominance of local variant and red shows the opposite)

8. LIST OF TABLES

Tab.	1 Basic parameters of proposed measures for expert variant (Exp) and for local preferences variant (Loc)
Tab.	2 Aggregated measures identification - expert variant
Tab.	3 Aggregated measure identification - local preferences variant
Tab.	4 Impact of measures on three elements of the catchment retention properties - expert variant
Tab.	5 Impact of measures on three elements of the catchment retention properties - local variant
Tab.	6 List of parameters for measures in expert variant 10
Tab.	7 List of parameters for measures in local preferences variant

9. REFERENCES

- (1) Pusłowska-Tyszewska D., 2019. StaticTool method and the StaticTool_2020.xlsm application. INTERREG CE project Framwat manuscript.
- (2) Tyszewski S., Herbich P., Porretta Brandyk L., 2019. Elaboration and testing of the static tool along with personal participation in the project meeting in Cracov : 20-21 November 2019. INTERREG CE project Framwat manuscript.
- (3) D.T1.3.1 Report from pilot action testing the prototype of the FroGIS tool in the river basins, Testing in the Blh pilot catchment.
- (4) D.T2.3.1 Concept plan for N(S)WRM in river basins, Pilot catchment Blh, SWME.
- (5) Kočický, D., Maretta, M., 2014. Zhodnotenie možného vplyvu existujúcich a navrhovaných preventívnych opatrení v povodí na dosiahnutie cieľov plánu manažmentu povodňového rizika. Štúdia. ESPRIT, spol. s r. o. Banská Štiavnica.
- (6) Čomaj M., 2016. Posúdenie protipovodňovej äčinnosti vybraných druhov opatrení zelenej infraštruktúry podľa metodiky NWRM. Závrečná správa. Bratislava, január 2017.
- (7) Styk, J., 2019: Erózia pôd, In: Kobza, J., Barančíková, G., Makovníková, J., Pálka, B., Styk, J., Širáň, M. 2019. Komplexné zhodnotenie aktuálneho stavu senzitívneho územia Krompachy Rudňany a okolie s dopadom na riešenie pôdoochranných opatrení. NPPC VUPOP, Bratislava, 2019, s. 55 61. ISBN 978-80-8163-028-6.
- (8) Styk, J., 2014. Návrh regulačných pôdoochranných opatrení. Erózia pôdy, In: Kobza, J., Barančíková, G., L., Dodok, R., Hrivňáková, K., Makovníková, J., Pálka, B., Pavlenda, P., Schlosserová, J., Styk, J., Širáň, M., 2014. Monitoring pôd Slovenskej republiky. Súčasný stav a vývoj monitorovaných vlastností pôd ako podklad k ich ochrane a ďalšiemu využívaniu (2007 - 2012). Výsledky Čiastkového monitorovacieho systému - Pôda, ako súčasť Monitoringu životného prostredia za obdobie 2007-2012 (4. cyklus). NPPC - Výskumný ústav pôdoznalectva a ochrany pôdy Bratislava, 2014, s. 234 - 241. ISBN 978-80-8163-004-0
- (9) Styk, J., Pálka, B., Granec, M., 2009. Využitie on-line aplikácie pri predikcii pôdnej erózie spôsobenej vodou (Utilization of on-line application for the prediction of soil erosion caused by water). In: Proceedings. Vedecké práce č. 31. VÚPOP Bratislava, 2009, s. 176-186. ISBN 978-80-89128-59-4.
- (10) Sobocká, J., Bezák, P., Skalský, R., 2018. Poloautomatické usporiadanie kultúrnych dielov ako protierózne opatrenie. <u>http://www.agroporadenstvo.sk/nove-poznatky-poda?article=1198</u>
- (11) D.T2.4.1 Reports from testing the dynamic model to assess cumulative effect of N(S)WRM (Pilot Action), Slaná river basin, Blh pilot catchment, Slovakia

10. ANNEX

Assessment of effects of natural small water retention measures based on national experiences, elaborated by Mr. Marek Čomaj, Water Research Institute, Bratislava.

DEVELOPING THE GIS BASED METHOD TO ASSESS CUMULATIVE EFFECT OF N(S)WRM AT THE RIVER BASIN SCALE

D.T2.2.2 - Reports from testing the static method to assess cumulative effect of N(S)WRM (Pilot action)	Version 1 02 2020
Testing in the Blh pilot catchment	02 2020
Slovak Water Management Enterprise	

Circulatio	n		
Issue	Date	Details	Editor
v1	02.2020	Document first draft version	J. Dobias, E. Harman, M. Koli, SWME
v1-1	03.2020	Document second draft version	J. Dobias, E. Harman, SWME
v1-2	05.2020	Document third draft version	M. Čomaj, Water Research Institute (WIR), M. Supeková, SWME,

Table of content

1.	INT	FRODUCTION	4
2.	DE	SCRIPTION OF INPUT DATA PREPARATION	5
3.	МС	DDIFICATIONS TO THE STATICTOOLS.XLSX TOOL PARAMETERS	11
4.	DE	SCRIPTION OF RESULTS	
	4.1.	For the expert variant	13
	4.2.	For the variant of local preferences	
	4.3.	Comparison of variants	
5.	CO	NCLUSIONS	
6.	RE	COMMENDATIONS	
7.	LIS	T OF FIGURES	40
8.	LIS	T OF TABLES	41
9.	RE	FERENCES	42
10.	AN	NEX	43

1. INTRODUCTION

The purpose of developing the StaticTool method and the computer application StaticTool.xlsm is to enable the estimation of the effects of the implementation of a program of natural small water retention measures (PoNSWRM, Program of measures) in a simplified way, which does not require the time-consuming and costly development of detailed models, hydrological or / and hydraulic, of the analysed catchment. Method is making use of a grading based on expert knowledge and is used to compare variants of the NSWRM program.

The potential effects of individual NSWR measures may be different, depending on the climatic and physiographic conditions (e.g. slopes, ground permeability) of the analysed area, so the method parameters should be adapted to local conditions (climate type, landscape type). The StaticTool method thus consists of two parts:

- developing method parameters for local conditions,
- estimation of the effects of activities planned under the Program of Natural Small Water Retention Measures.

The StaticTool method assumes that the expected effect of the PoNSWRM is to improve catchment retention properties, which is understood as increasing low flows (LowQ), reducing high flows (HighQ) and / or limiting the load of pollutants yielded from the catchment area (Qual). This effect depends on the planned measures, in particular: i) their type and ii) the level of intensity. The measures included in the StaticTool method are summarized in the local catalogue of measures. For each measure, an intensity criterion is formulated, and threshold values are defined that correspond to the characteristic intensity levels (low, medium, high). Each measure is also assigned the expected improvement of retention properties of the SPU, expressed on a point scale (0 - 5 points). The greatest improvement that can be achieved (maximum points for a given measure) corresponds to the implementation of the measure with maximum intensity. For lower intensity levels, the assigned grades are proportional to the level of intensity of planned measure. Hence, developing parameters of the StaticTool method means defining a set of functions that make grade assessment dependent on the type of planned measures and their intensity for each measure from the local catalogue.

The StaticTool method and the StaticTool.xlsm application were developed as part of the project FramWat, Work Package T2 (Effectiveness of the Natural Small Water Retention Measure), activity A.T2.2 (Developing the GIS based method to assess cumulative effect of N(S)WRM at the river basin scale), deliverable D.T2.2.1 (Static method to assess cumulative effect of N(S)WRM in the river basins). A detailed description of the methodology is in a separate file created by the author of the program. This report presents the results of testing the static method to assess cumulative effect of N(S)WRM via developed application (program) StaticTool.xlsm for the Slovak Pilot Catchment of the Blh River within Slaná River Basin.

2. DESCRIPTION OF INPUT DATA PREPARATION

The first step of the work with the StaticTool.xlsm program, it was necessary to specify the N(S)WRM types, for which calculations will be carried out for expert variant and for variant of local preferences. There were used measure types proposed within Concept plan preparation and these are showed in Fig.1 for both expert variant and for local preferences variant. For more information on variants see report on Concept plan preparation (4).

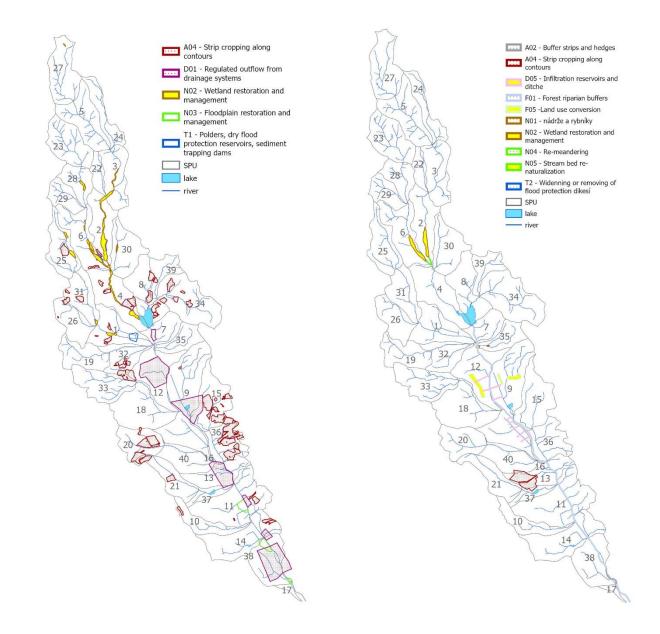


Fig. 1 Type and localization of measures proposed for expert variant and for local preferences variant

The types of measures are showed also in the table below (Tab. 1) and for all chosen individual measures the basic characteristic necessary to quantify criteria in the next steps of Statictool.xlsm application are calculated.

Code	Variant	Type NSWRM	Name	Parameters	Count of NSWRM	Area [ha]	Length [km]
				tesne siate plodiny sa			
				striedajú s riadkovými			
		Strip cropping		plodinami v minimálnej			
A04	Exp	along contours		šírke pásov - 15 m	54	915	-
				na území s existujúcimi			
				melioračnými			
				zariadeniami sa navrhujú			
		Regulated		opatrenia na regulovaný			
		outflow from		odtok vody z drenážnych			
D01	Exp	drainage systems		systémov	8	1268	-
				odstránenie inváznych			
				druhov rastlín a drevín,			
		Wetland		výsadba pôvodných			
		restoration and		druhov drevín, obnova			
N02	Exp	management		lúčnych ekosystémov	15	225	-
		Floodplain					
		restoration and					
N03	Exp	management		4 priepusty	4	115	-
				Rozloha nádrže: 30,35			
		Polders, dry flood		ha, celková kapacita:			
		protection		287600 m3, dĺžka			
		reservoirs,		priehrady - asi 643 m,			
		sediment		výška vzhľadom na dno			
T1	Exp	trapping dams	polder Papča	doliny - 6 m	1	30,35	-
				Rozloha nádrže: 28,67			
		Polders, dry flood		ha, celková kapacita:			
		protection		275000 m3, dĺžka			
		reservoirs,		priehrady - asi 1041 m,			
		sediment		výška vzhľadom na dno			
T1	Exp	trapping dams	polder Hrušovo 1	doliny - 10 m	1	28,67	-
				Rozloha nádrže: 18,08			
		Polders, dry flood		ha, celková kapacita:			
		protection		158200 m3, dĺžka			
		reservoirs,		priehrady - asi 761 m,			
		sediment		výška vzhľadom na dno			
T1	Exp	trapping dams	polder Hrušovo 2	, doliny - 7 m	1	18,08	-
				výsadba drevín na bočnú		,- 2	
		Buffer strips and		stranu hrádze Blh-			
A02	Loc	hedges		Ivanice	1	2	1,5
	1	 		tesne siate plodiny sa			,-
				striedajú s riadkovými			
		Strip cropping		plodinami v minimálnej			
A04	Loc	along contours		šírke pásov - 15 m	2	162	-

Tab. 1 Basic parameters of proposed measures for expert variant (Exp) and for local preferences variant (Loc)

Code	Variant	Type NSWRM	Name	Parameters	Count of NSWRM	Area [ha]	Length [km]
		Infiltration					
		reservoirs and					
		ditches (similar to					
D05	Loc	N13)		šírka 47 m, dĺžka 789 m	1	3,7	-
		Infiltration					
		reservoirs and					
		ditches (similar to					
D05	Loc	N13)		šírka 40 m, dĺžka 802 m	1	3,23	-
		Infiltration					
		reservoirs and					
		ditches (similar to					
D05	Loc	N13)		šírka 31 m, dĺžka 740 m	1	2,31	-
		Infiltration					
		reservoirs and					
		ditches (similar to					
D05	Loc	N13)		šírka 26 m, dĺžka 455 m	1	1,2	-
		Infiltration					
		reservoirs and					
		ditches (similar to					
D05	Loc	N13)		šírka 30 m, dĺžka 405 m	1	1,21	-
		Infiltration					
		reservoirs and					
		ditches (similar to		,			
D05	Loc	N13)		šírka 49 m, dĺžka 697 m	1	3,41	-
		Infiltration					
		reservoirs and					
		ditches (similar to		,			
D05	Loc	N13)		šírka 48 m, dĺžka 460 m	1	2,2	-
		Infiltration					
		reservoirs and					
		ditches (similar to		,			
D05	Loc	N13)		šírka 63 m, dĺžka 796 m	1	5,08	-
		Infiltration					
		reservoirs and					
		ditches (similar to					
D05	Loc	N13)		šírka 33 m, dĺžka 1103 m	1	3,64	-
				výsadba stromu každých			
		Forest riparian		6 metrov (vŕba, topol,			
F01	Loc	buffers		jelša)	1	161	27,63
				dubovo-brestovo-			
		Land use		jasenové nížinné lužné			
F05	Loc	conversion		lesy	3	79	-
				Rozloha nádrže: 1,82 ha,			
				celková kapacita: 54600			
				m3, dĺžka 180 m, šírka			
N01	Loc	Basins and ponds		101 m	1	1,82	-
				Rozloha nádrže: 1,44 ha,			
				celková kapacita: 43200			
				m3, dĺžka 164 m, šírka			
N01	Loc	Basins and ponds		88 m	1	1,44	-

Code	Variant	Type NSWRM	Name	Parameters	Count of NSWRM	Area [ha]	Length [km]
				odstránenie inváznych			
				druhov rastlín a drevín,			
		Wetland		výsadba pôvodných			
		restoration and		druhov drevín, obnova			
N02	Loc	management		lúčnych ekosystémov	3	240	-
N04	Loc	Re-meandering			1	161	27,63
		Stream bed re-					
N05	Loc	naturalization			2	16,34	2,33
		Widenning or					
		removing of flood					
Т2	Loc	protection dikes			1	161	-

At the initial stage, individual N(S)WRMs were merged under one (of the same) type and then aggregation was performed. Aggregated measures include a group of measures whose implementation in a similar way improves the retention properties of the catchment area, and assessment of the effects of individual activities, without detailed field or model studies at the current level of knowledge, is not possible. For the expert variant 4 records (A04 - WRAL; N02, N03 - ER; D01 - BPDA; T1) were received and for the local preferences variant 10 records (A02; A04 - WRAL; F01; F05 - AF; N01; N02 - ER; N04; N05 - BPRC; D05 - BPDA; T2) for variant local, see records in Tab. 2 and Tab. 3).

No	Individual measure ID	Individual measure name	Aggregated measure ID	Aggregated measure name
1	A04	Strip cropping along contours	WRAL	WRAL - best practices for Water Retention in Agricultural Lands
2	N02	Wetlands restoration and management	ER	ER - Ecosystems Restoration / renaturisation of water dependent ecosystems
3	N03	Floodplain restoration and management	ER	ER - Ecosystems Restoration / renaturisation of water dependent ecosystems
4	D01	Regulated outflow from drainage systems	BPDA	BPDA - Best Practices on Drained Areas
5	T1	Polders, dry flood protection reservoirs, sediment trapping dams	T1	Polders, dry flood protection reservoirs, sediment trapping dams

Tab. 2 Aggregated measures identification - expert variant

Tab. 3 Aggregated measure identification - local preferences variant

No	Individual	Individual measure name	Aggregated	Aggregated measure name
	measure ID		measure ID	
1	A02	Buffer strips and hedges	A02	Buffer strips and hedges
2	A04	Strip cropping along contours	WRAL	WRAL - best practices for Water
				Retention in Agricultural Lands
3	F01	Forest riparian buffers	F01	Forest riparian buffers
4	F05	Land use conversion	AF	AF - Afforestation
5	N01	Basins and ponds	N01	Basins and ponds

No	Individual measure ID	Individual measure name	Aggregated measure ID	Aggregated measure name
6	N02	Wetland restoration and management	ER	ER - Ecosystems Restoration / renaturisation of water dependent ecosystems
7	N04	Re-meandering	N04	Re-meandering
8	N05	Stream bed re-naturalization	BPRC	BPRC - natural channels and Best Practises of River Channels maintenance
9	D05	Infiltration reservoirs and ditches	BPDA	BPDA - Best Practices on Drained Areas
10	T2	Widening or removing of flood protection dikes	Т2	Widening or removing of flood protection dikes

In the local preferences variant there exist only one individual measure relevant to one type of aggregated measure, so in fact no aggregation of measures in necessary and codes of individual measures may not be necessary replaced by codes of aggregated measures in the calculation below.

For each measure, the intensity criteria and the threshold values for characteristic intensity levels were defined. According to the assumptions of the StaticTool method, the expected improvement in the catchment retention properties depends on the type and level of intensity of planned measures. Three levels of measures' intensity were distinguished: low, medium and high. They correspond to three levels of the expected improvement in the catchment retention properties (e.g. small, average and large). Four threshold values were used: T0 - no action, Tlow - the boundary between low and medium intensity, Thigh - the limit between medium and high intensity and Tmax, which corresponds to the hypothetical maximum possible intensity of measures. Three elements of the catchment retention properties (low flows, high flows and erosion), with maximum intensity of measures' application. There was needed to formulate a general assessment of measures (three above-mentioned elements together) and defining effect coefficients for lower than maximum intensity of measures. For the assessment of the impact of aggregated measures on three elements of the catchment retention properties a 6-grade scale was adopted from 0 to 5, where:

- 0 means no positive impact on the retention properties of the catchment area, and
- 5 means very high positive impact on the retention properties of the catchment area.

The tables below show the parameters used for calculations in the expert and local preferences variants (Tab. 4- Tab. 7).

No	Code	Aggregated measure name	Low flows	High flows	Qual Erosion	AVG
1	WRAL/A04	WRAL - best practices for Water Retention in Agricultural Lands	0	2	4	2.00
2	ER	ER - Ecosystems Restoration / renaturisation of water dependent ecosystems	0	5	4	3.00
3	BPDA/D01	BPDA - Best Practices on Drained Areas	2	3	2	2.33
4	T1	Polders, dry flood protection reservoirs, sediment trapping dams	0	5	3	2.67

Tab. 4 Impact of measures on three elements of the catchment retention properties - expert variant

Tab. 5 Impact of measures on three elements of the catchment retention properties - local variant

No	Code	Aggregated measure name	Low flows	High flows	Qual Erosion	AVG
1	A02	Buffer strips and hedges	1	1	3	1.67
2	WRAL/A04	WRAL - best practices for Water Retention in Agricultural Lands	0	2	4	2.00
3	F01	Forest riparian buffers	0	1	3	1.33
4	AF/F01	AF - Afforestation	3	3	4	3,33
5	N01	Basins and ponds	3	3	2	2,67
6	ER/N02	ER - Ecosystems Restoration / renaturisation of water dependent ecosystems	0	5	4	3.00
7	N04	Re-meandering	0	2	2	1,33
8	BPRC/N05	BPRC - natural channels and Best Practises of River Channels maintenance	4	4	2	3.33
9	BPDA/D05	BPDA - Best Practices on Drained Areas	0	2	2	1,33
10	Т2	Widening or removing of flood protection dikes	0	3	3	2.00

Tab. 6 List of parameters for measures in expert variant

AggregN	4				Intensity th	resholds				Grade th	resholds [%]		Grade va	lues		
No sort_AVG	No	Measure ID	Aggregated English	Definition of the intensity criteria in English	то	Tlow	Thigh	Tmax	Grade_max	E%0	E%low	E%high	E%max	EO	Elow	Ehigh	Emax
1	1	WRAL	agriculture	Arable land area on which best practices of water retention are applied and SPU area ratio [km2/km2]	0,00	0,30	0,80	1,00	4	o	30	80	100	0,00	1,20	3,20	4,00
4	2	ER	swamps	Total area of restored (and managed) wetlands, floodplains and reconnected ox-bows and SPU area ratio [km2/km2]	0,00	0,10	0,40	1,00	5	0	60	95	100	0,00	3,00	4,75	5,00
2	3	BPDA	drainage systems	Drained area under Best DA Practices and SPU area ratio [km2/km2]	0,00	0,05	0,15	1,00	4	0	60	95	100	0,00	2,40	3,80	4,00
3	4	Τ1		Catchment area upstream of measure (polder, dry reservoir) and SPU area ratio [km2/km2]	0,00	0,05	0,20	1,00	5	0	60	95	100	0,00	3,00	4,75	5,00

AggregN	10				Intensity th	resholds				Grade th	resholds (%]		Grade val	lues		
No sort_AVG	No	Measure ID	Aggregated English	Definition of the intensity criteria in English	то	Tlow	Thigh	Tmax	Grade_max	E%0	E%low	E%high	E%max	EO	Elow	Ehigh	Emax
5	1	A02		Buffer strips density - total lenght of strips and SPU area ratio [km/km2]	0,00	0,50	2,00	6,00	3	0	60	95	100	0,00	1,80	2,85	3,00
6	2	A04	Strip cropping along contours	Arable land area on which best practices of water retention are applied and SPU area ratio [km2/km2]	0,00	0,30	0,80	1,00	3	0	30	80	100	0,00	0,90	2,40	3,00
2	з	F01		Total lenght of forest riparian buffers and doubled lenght of water courses in SPU ratio [km/km]	0,00	0,30	0,70	1,00	2	0	30	70	100	0,00	0,60	1,40	2,00
10	4	F05		Newly afforested area and SPU area ratio [km2/km2]	0,00	0,05	0,20	1,00	5	0	60	95	100	0,00	3,00	4,75	5,00
8	5	N01		Total area of basins and ponds and SPU area ratio [km2/km2]	0,00	0,01	0,10	1,00	4	o	60	95	100	0,00	2,40	3,80	4,00
9	6	N02	Wetland restoration and management	Total area of restored (and managed) wetlands, floodplains and reconnected ox-bows and SPU area ratio [km2/km2]	0,00	0,10	0,40	1,00	5	0	60	95	100	0,00	3,00	4,75	5,00
3	7	N04		Total length of re-meandered water bodies and water bodies length in SPU ratio [km/km]	0,00	0,30	0,60	1,00	2	o	30	60	100	0,00	0,60	1,20	2,00
4	8	N05	Stream bed re-naturalization	Total length of restored water bodies (natural stream bed, bank protection removal, etc) and water bodies length in SPU ratio [km/km]	0,00	0,20	0,60	1,00	2	0	20	60	100	0,00	0,40	1,20	2,00
1	9	D05		Drained area under Best DA Practices and SPU area ratio [km2/km2]	0,00	0,05	0,15	1,00	2	0	60	95	100	0,00	1,20	1,90	2,00
7	10	Т2		Active floodplain area and max (during HHQ) floodplain area in SPU ratio [km2/km2]	0,00	0,05	0,20	1,00	3	0	60	95	100	0,00	1,80	2,85	3,00

Tab. 7 List of parameters for measures in local preferences variant

For each planned measure (in SPUs), its intensity was given, expressed in accordance with the adopted intensity criterion definitions. For each SPU in the columns corresponding to individual measures, there was provided their intensity, with the value 0 - meaning no measure in the given SPU will be realized, and 1 - planning the measure with the maximum possible intensity. Intensity levels for 40 SPUs were determined for the Blh pilot catchment.

3. MODIFICATIONS TO THE STATICTOOLS.XLSX TOOL PARAMETERS

Defining the measures of the intensity and determining the thresholds for the characteristic levels of intensity (low, medium, high) was done with methodology developed by the company Pro-Woda (Tyszewski S. 2019).

Further the external expert with local knowledge and experiences in the field of assessment the efficiency of natural small retention measures was contacted and proposal of efficiency of each of measures defined in the catalogue of measures in more consultation rounds. There was assessed the potential effect of each measure within the five grade scale where 0 means no effect to particular goal and 5 means the maximum effect for particular goal. As the impact of different types of flood protection is different for small and extreme events, there was proposed to provide assessment for five groups of goals:

- low flows
- quality
- high flows small floods (Q1-Q10)
- high flows medium floods (Q10-Q50)
- high flows extreme floods (Q50-Q1000)

For the water management structures there was proposed to divide measure T3 into two subgroups:

- bigger and medium size water reservoirs
- small shallow water reservoirs and fishponds (less than 1 000 m²)

The results of Mr. Marek Čomaj from Water Research Institute are showed in the Annex.

Further the different alternatives of measures proposed for local preferences variaant were examined. These are three alternatives assuming that:

- a. Alternative a) As criteria there was used "km²/km²" instead "km/km²" for measures F01, N04 and N05 and "km/km" for measure A02. According the developed methodology for each planned measure (in SPUs), its intensity is given, expressed in accordance with the adopted intensity criterion definitions. This alternative is relevant only for some of measures proposed within local preferences variant.
- b. Alternative b) For each of the variant we tried to select only "most efficient measures" for high flows, low flows and quality
- c. Alternative c) based on results of consultation with national expert on concretizing the effects of measures for particular goals taking into account different discharges in rivers varying from Q10 up to Q1000 was created the alternative to minimize impacts of low flow conditions.

4. DESCRIPTION OF RESULTS

The scope of testing is to compare improvement of valorization results for entire pilot area or for individual SPUs. The valorization results are calculated according Valorization method developed within project, for more information see (3). Results of catchment valorization are shown in Fig. 1 where needs and possibilities of water retention are calculated for each particular SPU in the Blh pilot catchment.

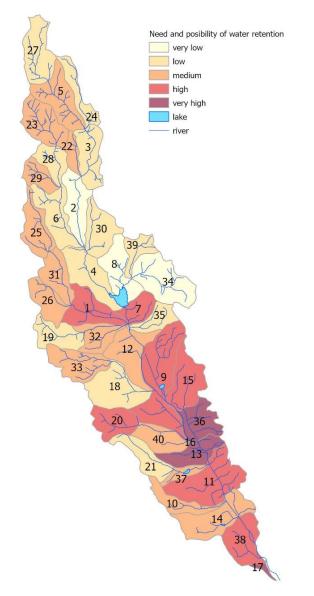


Fig. 2 Map of needs and possibilities of water retention in SPUs

4.1. For the expert variant

Type and localization of all the measures proposed for the expert variant in particular SPUs are showed in Fig. 2.

The results of the assessment were obtained from the StaticAssessment table of StaticTool.xlsm. This table contains the cumulative assessment for the entire pilot catchment and partial assessments for each group of measures and for each SPU.

The obtained results show that the highest impact on the final grade had aggregated measures - best practices on drained areas (BPDA = 30.80), then other 3 measures had significantly lower impact: Ecosystems Restoration/renaturisation of water dependent ecosystems (ER =

12.51), Polders, dry flood protection reservoirs, sediment trapping dams (T1 = 6.00) and lowest impact on the finale grade had aggregated measures - best practices for Water Retention in Agricultural Lands (WRAL = 5.78). In order to assess a single SPU while taking into account the size of the catchment area, additional calculations were made according to the following equation SPU grades * $F_SPU/\Sigma F_SPU$. The results are shown in Tab. 1.

The greatest impact on the final assessment had SPU 02, 09, 38 which are characterized by high values of SPU grade and used measures. The SPU rating which does not take into account the area shows similar results: the highest rating was obtained by SPU 38 in which measurements like ecosystems restoration and water retention in agricultural lands are planned. In a situation where the SPUs have different sizes, comparing their ratings is questionable. The final rating for the catchment also depends largely on the size of the SPUs. This variant contained a large number of measures with low efficiency, therefore the SPU assessment results are spatially dispersed and their discrepancies are small. The overall rating for this option is 1.77.

lumber of	4			Grading	g of the	Program	of Smal	Water Retention Me	asures
neasures Jumber of PUs	40		Measure No.	1	2	3	4	Catchment grade for current variant	
	Grade for	r a measure	(total by SPUs):	5,78	12,31	30,80	6,00	1,54	
No.	SPU Id	SPU name	Measure Id by User	WRAL	ER	BPDA	T1	SPU grades	SPU_grad
			F_SPU [km ²]	km2/km2	km2/km2	km2/km2	km2/km2		/ΣF_SPU
1	SPU_01		7,79	0,11	0,38		2,34	2,82	0,09341
2	SPU_02		7,33	0,02	3,09	-	2,35	5,46	0,17009
3	SPU_03		7,27		0,93			0,93	0,02887
4	SPU_04		9,36	0,21	1,48	1,77		3,47	0,13786
6	SPU_06		8,22	0,04	1,53		1,32	2,89	0,10095
7	SPU_07		4,23		1.10	2,46	100	2,46	0,04425
8	SPU_08		7,95	0,42	8	1		0,42	0,01408
9	SPU 09		17,20	0.01		3,28		3,29	0,24015
10	SPU_10		4,58	0,08				0,08	0,00161
11	SPU 11		13,27	0.07	1,00	0,95		2,02	0,11401
12	SPU 12		8,59	0.06		3,85	-	3,91	0,14291
13	SPU 13		5,99	0.05		3,83		3,87	0.09855
14	SPU 14	-	10,10	0,08	0,24	1,18		1,51	0,05454
15	SPU 15		8,80	0,68	-)	2,66		3,34	0,12505
16	SPU 16		0,04	-,	5	3,98		3,98	0,00070
17	SPU_17		0,62		0,12			0,12	0.00032
18	SPU_18	-	10,29	0,00	-)	-		0,00	0,00016
20	SPU 20		6,17	0.86				0,86	0.02261
21	SPU_21		5,84	0,40				0,40	0,00997
22	SPU 22		2,29	-,		0.16		0,16	0.00155
25	SPU_25		6,82	0,20	0,71	0,20		0,91	0,02625
26	SPU 26		5,61	0,08	-,	- 6		0,08	0.00195
27	SPU_27		8,46	-,	0,03	. S		0,03	0,00113
28	SPU 28		4,54		0.62			0,62	0.01201
30	SPU_20		7,26		0,15	-		0,15	0.00465
31	SPU_31		6,06	0,17	0,20			0,38	0.00970
32	SPU_32		5,20	0,17	0,20			0,41	0,00897
33	SPU_32		7,87	0,41		·		0,18	0.00618
34	SPU 34	-	11,57	0,15	-			0,21	0,01028
36	SPU_34		6,63	1,37	-	0.09		1,46	0,01028
37	SPU_30		2,14	1,27	-5	1,19	-	1,40	0,04120
38	SPU_37				1,82	3.87		5,70	and the second se
39			7,73	0.05	1,02	3,87			0,18726
40	SPU_39 SPU_40		3,67	0,05		1,50		0,06	0,03704

Tab. 1. Assessment of the effectiveness of the expert variant

Also alternative b) mentioned in the chapter 3 was examined here. In Tab 2 we tried to propose just those measures, which should improve water quality. Measures were selected based on highest impact grade on quality - WRAL, ER. The overall rating for this option is 0.63. In Tab 3 we tried to propose just those measures, which should improve high flows. Measures were selected based on highest impact grade on high flow - ER, T1. The overall rating for this option is 1.38. In Tab 4 we tried to propose just those measures, which should improve lowf lows. Measures were selected based on highest impact grade on low flow, in this case just one measure - BPDA was selected. The overall rating for this option is 2.25.

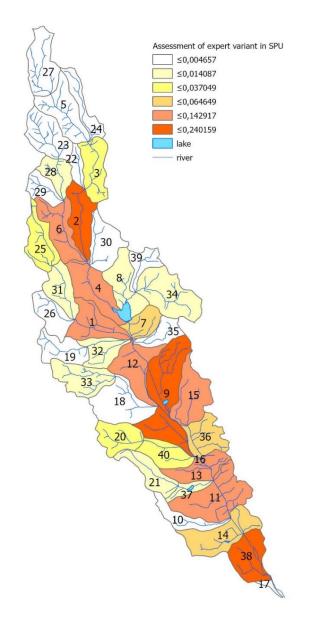


Fig. 3 Map of assessment of the expert variant at the SPU level

Number of measures	4			Grading	g of the	Program	n of Sma	ll Wate	r Retent	ion Measures		
Number of SPUs	27		Measure No.	1	2	3	4				Catchment grade for current variant	
		Grade for a measure	(total by SPUs):	5,78	11,38	0,00	0,00				0,63	
No.	SPU Id	SPU name	Measure Id by User	WRAL	ER	BPDA	T1				SPU grades	SPU_grade s * F_SPU
			F_SPU [km ²]	km2/km2	km2/km2	km2/km2	km2/km2					/ΣF_SPU
1	SPU_01		7,79	0,11	0,38						0,48	0,02
2	SPU_02		7,33	0,02	3,09						3,11	0,11
3	SPU_04		9,36	0,21	1,48						1,69	0,08
4	SPU_06		8,22	0,04	1,53						1,57	0,06
5	SPU_08		7,95	0,42							0,42	0,02
6	SPU_09		17,20	0,01							0,01	0,00
7	SPU_10		4,58	0,08							0,08	0,00
8	SPU_11		13,27	0,07	1,00						1,06	0,07
9	SPU_12		8,59	0,05							0,06	0,00
10	SPU_13		5,99	0,05							0,05	0,00
11	SPU_14		10,10	0,08	0,24						0,32	0,02
12	SPU_15		8,80	0,68							0,68	0,03
13	SPU_17		0,62		0,12						0,12	0,00
14	SPU_18		10,29	0,00							0,00	0,00
15	SPU_20		6,17	0,86							0,86	0,03
16	SPU_21		5,84	0,40							0,40	0,01
17	SPU_25		6,82	0,20	0,71						0,91	0,03
18	SPU_26		5,61	0,08							0,08	0,00
19	SPU_27		8,46		0,03						0,03	0,00
20	SPU_28		4,54		0,62						0,62	0,01
21	SPU_30		7,26		0,15						0,15	0,01
22	SPU_31		6,06	0,17	0,20						0,38	0,01
23	SPU_32		5,20	0,41							0,41	0,01
24	SPU_33		7,87	0,18							0,18	0,01
25	SPU_34		11,57	0,21							0,21	0,01
26	SPU_36		6,63	1,37							1,37	0,04
27	SPU_38		7,73		1,82						1,82	0,07

Tab. 2. Assessment of the effectiveness of the expert variant for quality improvement

Tab. 3. Assessment of the effectiveness of the expert variant for improvement of high flow conditions

Number of measures	4			Grading	g of the I	Program	n of Sma	ll Wate	r Retent	ion Mea	asures		
Number of SPUs	14		Measure No.	1	2	3	4					Catchment grade for current variant	
		Grade for a measure	(total by SPUs):	0,00	12,31	0,00	6,00					1,38	
No.	SPU Id	SPU name	Measure Id by User	WRAL	ER	BPDA	T1					SPU grades	SPU_grade s * F_SPU
			F_SPU [km ²]	km2/km2	km2/km2	km2/km2	km2/km2						/ΣF_SPU
1	SPU_01		7,79		0,38		2,34					2,71	0,20
2	SPU_02		7,33		3,09		2,35					5,44	0,38
3	SPU_03		7,27		0,93							0,93	0,06
4	SPU_04		9,36		1,48							1,48	0,13
5	SPU_06		8,22		1,53		1,32					2,85	0,22
6	SPU_11		13,27		1,00							1,00	0,13
7	SPU_14		10,10		0,24							0,24	0,02
8	SPU_17		0,62		0,12							0,12	0,00
9	SPU_25		6,82		0,71							0,71	0,05
10	SPU_27		8,46		0,03							0,03	0,00
11	SPU_28		4,54		0,62							0,62	0,03
12	SPU_30		7,26		0,15							0,15	0,01
13	SPU_31		6,06		0,20							0,20	0,01
14	SPU_38		7,73		1,82							1,82	0,13

Number of measures	4			Grading	g of the	Program	n of Sma	ll Wate	r Retent	ion Mea	sures		
measures Number of SPUs	14		Measure No.	1	2	3	4					Catchment grade for current variant	
		Grade for a measure	(total by SPUs):	0,00	0,00	30,80	0,00					2,25	
No.	SPU Id	SPU name	Measure Id by User	WRAL	ER	BPDA	T1					SPU grades	SPU_grade s * F_SPU
			F_SPU [km ²]	km2/km2	km2/km2	km2/km2	km2/km2						/ΣF_SPU
1	SPU_04		9,36			1,77						1,77	0,16
2	SPU_07		4,23			2,46						2,46	0,10
3	SPU_09		17,20			3,28						3,28	0,55
4	SPU_11		13,27			0,96						0,96	0,12
5	SPU_12		8,59			3,85						3,85	0,32
6	SPU_13		5,99			3,83						3,83	0,22
7	SPU_14		10,10			1,18						1,18	0,12
8	SPU_15		8,80			2,66						2,66	0,23
9	SPU_16		0,04			3,98						3,98	0,00
10	SPU_22		2,29			0,16						0,16	0,00
11	SPU_36		6,63			0,09						0,09	0,01
12	SPU_37		2,14			1,19						1,19	0,02
13	SPU_38		7,73			3,87						3,87	0,29
14	SPU_40		5,79			1,50						1,50	0,09

Tab. 4. Assessment of the effectiveness of the expert variant for improvement of low flow conditions

Based on the overall values of calculated grades it can be assumed that when selecting only measures to improve low flow conditions the effect for whole pilot area will be higher (2.25 to 1,77).

4.2. For the variant of local preferences

Type and localization of all the measures proposed for the expert variant in particular SPUs are showed in Fig. 2.

The results of the local preferences variant assessment are also presented in the form of a table (Tab. 5) and map (Fig. 4). In this variant, wetland restoration and management (N02 = 13.56) and widening or removing of flood protection dikes (T02 = 10.36) have the greatest impact on the final score. Less impactful measures are polders, dry flood protection reservoirs, sediment trapping dams (T01 = 7.15) and land use conversion (F05 = 4.17). The impact of other measures is negligible. In order to assess a single SPU while taking into account the size of the catchment area, additional calculations were made according to the following equation SPU grades * F_SPU/ Σ F_SPU. The results are shown

The greatest impact on the final assessment had SPU 12 and 09. SPUs assessment without taking into account the area gives different results, and in this case the SPUs 12, 16, 13, 17 dominate with a score of 12 = 6.28, 16 = 5.9, 13 = 5.28, 17 = 4.57. These variants included a small number of measures with high efficiency which caused the SPUs assessment results to be cumulated only in 4 SPUs (12, 16, 13, 17) and divergences between them and others are very significant. The overall rating for this variant is 1.68.

Number of measures	10			Grading	g of the I	Progran	n of Smal	ll Water	Retent	ion Mea	asures				
Number of SPUs	20		Measure No.	1	2	3	4	5	6	7	8	9	10	Catchment grade for current variant	
	Grade for	a measure	(total by SPUs):	0,70	0,93	2,16	4,17	1,77	13,56	1,08	0,26	0,46	10,40	1,63	
No.	SPU Id	SPU name	Measure Id by User	A02	A04	F01	F05	N01	N02	N04	N05	D05	T2	SPU grades	SPU_grade s * F_SPU
			F_SPU [km ²]	km/km2	km2/km2	km/km	km2/km2	km2/km2	km2/km2	km/km	km/km	km2/km2	km2/km2		/ Z F_SPU
1	SPU_01		7,79	İ		0,02			0,02	0,01			0,02	0,07	0,003680
2	SPU_02		7,33						1,66		0,02			1,68	0,089060
4	SPU_04		9,36			1		2			0,01			0,01	0,000792
6	SPU_06		8,22						1,39		0,23			1,62	0,096037
7	SPU_07		4,23			0,08			0,47	0,04			0,57	1,15	0,035213
9	SPU_09		17,20			0,34	1,11		0,39	0,17		0,27	0,46	2,74	0,341066
10	SPU_10		4,58		8	0,01		2	0,01	0,00	2		0,02	0,04	0,001414
11	SPU_11		13,27		a 1	0,23			0,46	0,11	0	·	0,55	1,35	0,129282
12	SPU_12		8,59			0,40	3,05	0,13	1,24	0,20		0,19	1,49	6,71	0,416817
13	SPU_13		5,99		0,69	0,14	96		0,63	0,07	1	0.00	0,76	2,29	0,099195
14	SPU_14		10,10		100	0,11		2	0,29	0,05	101		0,35	0,81	0,059088
15	SPU_15		8,80			0,07			0,17	0,04		0,00	0,20	0,48	0,030268
16	SPU_16		0,04			0,05			3,12	0,02	ĵ.		2,30	5,49	0,001650
17	SPU_17	1	0,62			0,15			2,28	0,07			1,98	4,49	0,020229
21	SPU_21		5,84		0,01						ŝ			0,01	0,000509
35	SPU_35		4,08	_	a 1	0,01		1,63	0,00	0,00	0		0,00	1,64	0,048437
36	SPU_36		6,63			0,26			0,44	0,13		0,00	0,53	1,36	0,065210
37	SPU_37		2,14		0,18					201	1	a - 22 - 22		0,18	0,002822
38	SPU_38		7,73	0,70	103	0,30		3	0,98	0,15	121	1	1,17	3,31	0,184831
40	SPU_40		5,79		0,04	0,00			0,00	0,00			0,00	0,05	0,001963

Tab. 5. Assessment of the effectiveness of the local preferences variant

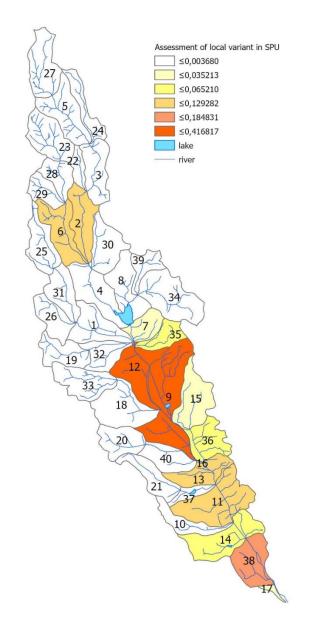


Fig 4 Map of assessment of the local preferences variant at the SPU level

Also alternative b) mentioned in the chapter 3 was examined. In Tab. 6 we tried to propose just those measures, which should improve water quality. Measures were selected bases on highest impact grade on quality - A02, F01, F05, N02, A04, T2. The overall rating for this option is 1.55. In Tab 7 we tried using just those measure, which should improve on high flows. Measures were selected based on highest impact grade on high flow - F05, N01, N02, D05, A04, T2. The overall rating for this option is 1.68. In Tab 8 we tried to propose just those measures, which should improve low flows. Measures were selected based on highest impact grade on highest impact grade on low flow, in this case just measures F05, N01, D05. The overall rating for this option is 1.31.

Number of measures	10	-		Gradin	g of the I	Program	n of Sma	II Water	Retent	ion Mea	asures	0 0,		and the state of t	
Number of SPUs	19		Measure No.	1	2	3	4	5	6	7	8	9	10	Catchment grade for current variant	
	Grade for	a measure	(total by SPUs):	0,70	0,93	2,16	4,17	0,00	13,56	0,00	0,00	0,00	10,40	1,54	
No.	SPU Id	SPU name	Measure Id by User	A02	A04	F01	F05	N01	N02	N04	N05	D05	T2	SPU grades	SPU_grade s * F_SPU
			F_SPU [km ²]	km/km2	km2/km2	km/km	km2/km2	km2/km2	km2/km2	km/km	km/km	km2/km2	km2/km2		/ I F_SPU
1	SPU_01		7,79			0,02			0,02				0,02	0,06	0,003476
2	SPU_02		7,33						1,66					1,66	0,094349
6	SPU_06		8,22						1,39					1,39	0,088374
7	SPU_07		4,23		2	0,08		2	0,47		2		0,57	1,11	0,036491
9	SPU_09		17,20			0,34	1,11		0,39				0,46	2,30	0,307168
10	SPU_10		4,58			0,01			0,01				0,02	0,04	0,001378
11	SPU_11		13,27			0,23			0,46				0,55	1,23	0,127025
12	SPU_12		8,59		S 8	0,40	3,06		1,24		2		1,49	6,19	0,412454
13	SPU_13		5,99		0,69	0,14			0,63				0,76	2,22	0,103134
14	SPU_14		10,10			0,11			0,29				0,35	0,75	0,059101
15	SPU_15		8,80			0,07			0,17				0,20	0,44	0,029844
16	SPU_16		0,04		19 - 19 - 19 - 19 - 19 - 19 - 19 - 19 -	0,05		2	3,12		10		2,30	5,47	0,001762
17	SPU_17		0,62			0,15			2,28				1,98	4,42	0,021339
21	SPU_21		5,84		0,01									0,01	0,000545
35	SPU_35		4,08			0,01			0,00				0,00	0,01	0,000259
36	SPU_36		6,63		5	0,26			0,44		2		0,53	1,23	0,063325
37	SPU_37		2,14		0,18									0,18	0,003027
38	SPU_38		7,73	0,70		0,30			0,98				1,17	3,15	0,189123
40	SPU_40		5,79		0,04	0,00			0,00			1	0,00	0,05	0,002053

Tab. 6. Assessment of the effectiveness of the local preferences variant for quality improvement

Tab. 7. Assessment of the effectiveness of the local preferences variant for improvement of high flow conditions

Number of	10			Gradin	g of the l	Progran	n of Sma	ll Water	Retent	ion Mea	asures				
measures Number of SPUs	17		Measure No.	1	2	3	4	5	6	7	8	9	10	Catchment grade for current variant	
	Grade for	a measure	(total by SPUs):	0,00	0,00	0,00	4,17	1,77	13,56	0,00	0,00	0,00	10,40	1,46	
No.	SPU Id	SPU name	Measure Id by User	A02	A04	F01	F05	N01	N02	N04	N05	D05	T2	SPU grades	SPU_grade s * F_SPU
	_		F_SPU [km ²]	km/km2	km2/km2	km/km	km2/km2	km2/km2	km2/km2	km/km	km/km	km2/km2	km2/km2		/ E F_SPU
1	SPU_01		7,79	1					0,02				0,02	0,04	0,002700
2	SPU_02		7,33						1,65					1,66	0,100573
6	SPU_06	1	8,22			·,			1,39		1	·		1,39	0,094204
7	SPU_07		4,23					3	0,47		1		0,57	1,04	0,036173
9	SPU_09		17,20				1,11		0,39				0,45	1,96	0,278632
10	SPU_10		4,58						0,01				0,02	0,03	0,001173
11	SPU_11	1	13,27)		· · · · · · · · · · · · · · · · · · ·	0,45		-		0,55	1,01	0,110589
12	SPU_12		8,59				3,05	0,13	1,24		i i		1,49	5,93	0,420958
13	SPU_13		5,99						0,63				0,76	1,39	0,058658
14	SPU_14		10,10			(0,29				0,35	0,65	0,053884
15	SPU_15		8,80						0,17			· · · · · · · · · · · · · · · · · · ·	0,20	0,37	0,026704
16	SPU_16		0,04		5. J			3	3,12			1	2,30	5,42	0,001863
17	SPU_17		0,62						2,28				1,98	4,27	0,021983
35	SPU_35		4,08					1,63	0,00				0,00	1,63	0,054985
36	SPU_36	1	6,63			·		9—30——3	0,44		1		0,53	0,97	0,053398
38	SPU_38	1	7,73		6			2	0,98				1,17	2,15	0,137526
40	SPU_40		5,79						0,00				0,00	0,00	0,000120

Number of measures	10			Grading	g of the I	Program	n of Sma	ll Water	Retent	ion Mea	sures				
Number of SPUs	3		Measure No.	1	2	3	4	5	6	7	8	9	10	Catchment grade for current variant	
	Grade for	r a measure	(total by SPUs):	0,00	0,00	0,00	4,17	1,77	0,00	0,00	0,00	0,00	0,00	1,78	
No.	SPU Id	SPU name	Measure Id by User	A02	A04	F01	F05	N01	N02	N04	N05	D05	T2	SPU grades	SPU_grade s * F_SPU
			F_SPU [km ²]	km/km2	km2/km2	km/km	km2/km2	km2/km2	km2/km2	km/km	km/km	km2/km2	km2/km2		/ E F_SPU
9	SPU_09		17,20				1,11				0			1,11	0,639183
12	SPU_12		8,59				3,06	0,13						3,20	0,920293
35	SPU_35	2	4,08		3			1,63			1			1,63	0,222692

Based on the overall values of calculated grades it can be assumed that the effect for whole pilot area is the highest when taking into account all of proposed measures (1.68).

Results of assessments for all three phenomena are shown in the Fig, 5, 6 and 7.

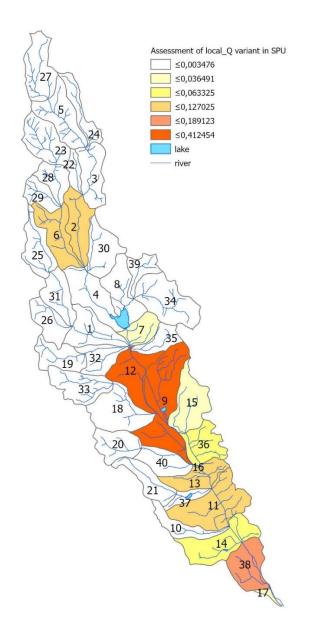


Fig. 5 Map of assessment of the effectiveness of the local preferences variant for quality improvement

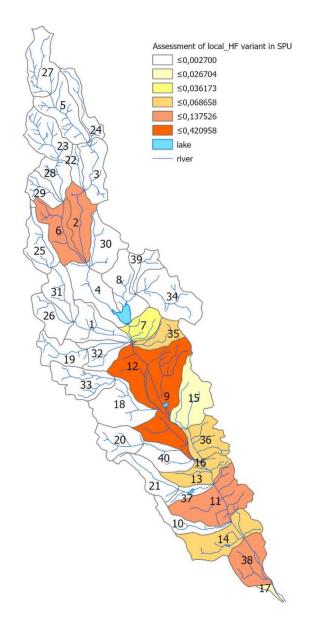


Fig. 6 Map of assessment of the effectiveness of the local preferences variant for improvement of high flow conditions

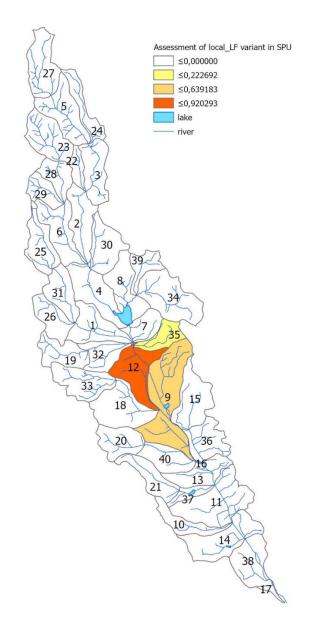


Fig. 7 Map of assessment of the effectiveness of the local preferences variant for improvement of low flow conditions

Also alternative a) mentioned in the chapter 3 taking into consideration the change of criteria from "km/km" and "km/km²" to "km²/km²" was examined here. Results and chosen criteria are shown in the tables Tab. 9 and tab. 10 and assessments are shown in Fig. 8 and 9. Based on the reached grading (1.41, 1,37) it seems to be even less efficient alternative as calculated above, so the change of criteria was wrong and we have to keep criteria proposed by project.

Number of measures	10	2		Grading	g of the	Program	n of Sma	ll Wate	Retent	ion Mea	asures				
Number of SPUs	20	6)	Measure No.	1	2	3	4	5	6	7	8	9	10	Catchment grade for current variant	<u></u>
	Grade for a measure (total by SPUs):				0,93	0,73	4,17	1,77	13,56	0,73	0,02	0,46	10,40	1,41	
No.	SPU Id	SPU name	Measure Id by User F_SPU [km ²]	A02	A04	F01	F05	N01	N02	N04	N05	D05	T2	SPU grades	SPU_grade s * F_SPU
				km2/km2 km2/km2 km2/km2 km2/km2 km2/km2 km2/km2 km2/km2 km2/km2 km2/km2 km2/km2 km2/km2											/ΣF_SPU
1	SPU_01		7,79			0,00			0,02	0,00			0,02	0,04	0,002505
2	SPU_02		7,33						1,66		0,01			1,67	0,088270
4	SPU_04		9,36		2			1	a 60 - 5		0,00	8		0,00	0,000087
6	SPU_06	<u></u>	8,22		3			2	1,39		0,01			1,40	0,083038
7	SPU_07		4,23			0,03			0,47	0,03	20		0,57	1,10	0,033556
9	SPU_09		17,20		0	0,03	1,11		0,39	0,03	0	0,27	0,46	2,28	0,283449
10	SPU_10		4,58		2.	0,00			0,01	0,00			0,02	0,03	0,001088
11	SPU_11	5	13,27		8	0,03		S.	0,46	0,03	3		0,55	1,07	0,102588
12	SPU_12		8,59	_		0,08	3,06	0,13	1,24	0,08		0,19	1,49	6,28	0,390020
13	SPU_13		5,99		0,69	0,04			0,63	0,04			0,76	2,17	0,093717
14	SPU_14		10,10		21. 22	0,02		1	0,29	0,02		8	0,35	0,68	0,049986
15	SPU_15	5	8,80		1	0,01		E.	0,17	0,01	8	0,00	0,20	0,39	0,024982
16	SPU_16		0,04		10	0,24			3,12	0,24	20		2,30	5,90	0,001775
17	SPU_17		0,62		0	0,15			2,28	0,15			1,98	4,57	0,020599
21	SPU_21		5,84		0,01							1		0,01	0,000509
35	SPU_35		4,08		8	0,00		1,63	0,00	0,00	3		0,00	1,63	0,048093
36	SPU_36		6,63	_		0,03			0,44	0,03		0,00	0,53	1,03	0,049536
37	SPU_37		2,14		0,18									0,18	0,002822
38	SPU_38		7,73	0,01	84 - 92	0,07		1	0,98	0,07		-	1,17	2,29	0,127994
40	SPU 40	2	5,79		0.04	0.00		8	0,00	0.00	8		0,00	0,04	0,001823

Tab. 9. Assessment of the effectiveness of the local preferences variant with changed criteria

Tab. 10. Assessment of the effectiveness of the local preferences variant with changed criteria for quality improvement

Number of measures	10 19	85		Grading of the Program of Small Water Retention Measures											
Number of SPUs		с. 21	Measure No.	1	2	3	4	5	6	7	8	9	10	Catchment grade for current variant	
	Grade for a measure (total by SPUs):				0,93	0,73	4,17	0,00	13,56	0,00	0,00	0,00	10,40	1,37	
No.	SPU Id	SPU name	Measure Id by User F_SPU [km ²]	A02	A04	F01	F05	N01	N02	N04	N05	D05	T2	SPU grades	SPU_grade s * F_SPU
				km2/km2	km2/km2	km2/km2	km2/km2	km2/km2	km2/km2	km2/km2	km2/km2	km2/km2	km2/km2		/ΣF_SPU
1	SPU_01		7,79			0,00		10	0,02				0,02	0,04	0,002610
2	SPU_02		7,33						1,66					1,66	0,094349
6	SPU_06		8,22						1,39					1,39	0,088374
7	SPU_07	3	4,23			0,03		3	0,47	() (0,57	1,07	0,034963
9	SPU_09	24	17,20			0,03	1,11	36	0,39	,			0,46	1,99	0,264824
10	SPU_10		4,58			0,00		0	0,01				0,02	0,03	0,001134
11	SPU_11		13,27	(in the second s		0,03			0,45	1			0,55	1,04	0,105889
12	SPU_12	100	8,59			0,08	3,06	3	1,24				1,49	5,88	0,391457
13	SPU_13	24	5,99	,,	0,69	0,04		46	0,63	,,	_		0,76	2,12	0,098566
14	SPU_14		10,10			0,02			0,29				0,35	0,67	0,052082
15	SPU_15		8,80			0,01			0,17				0,20	0,38	0,025810
16	SPU_16	1	0,04			0,24		3	3,12				2,30	5,66	0,001825
17	SPU_17		0,62			0,15		36	2,28	,)			1,98	4,42	0,021358
21	SPU_21		5,84		0,01									0,01	0,000545
35	SPU_35		4,08		2.00	0,00			0,00				0,00	0,00	0,000013
36	SPU_36	1	6,63	1		0,03		3	0,44				0,53	1,00	0,051611
37	SPU_37	24	2,14	· · · · · ·	0,18			36						0,18	0,003027
38	SPU_38		7,73	0,01		0,07		0	0,98				1,17	2,22	0,133374
40	SPU 40	22	5,79	- 93 - 94	0,04	0,00		84	0,00				0,00	0,04	0,001951

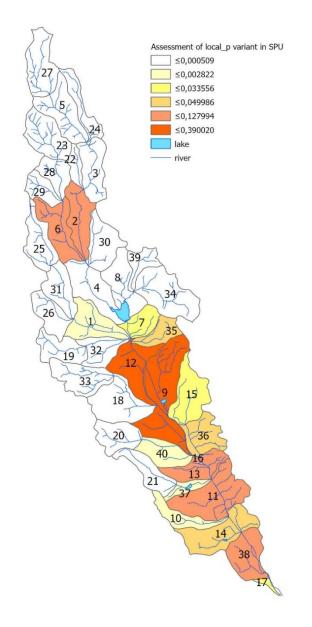


Fig. 8 Map of assessment of the local preferences variant with changed criteria at the SPU level

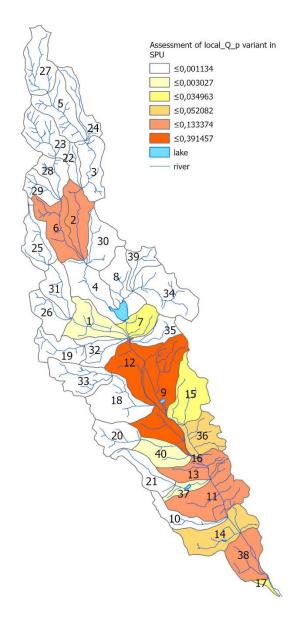


Fig. 9 Map of assessment of the effectiveness of the local preferences variant with changed criteria for quality improvement

Also alternative c) mentioned in the chapter 3 based on the consultation with an external expert the variant with the most effective measures for minimizing the negative effects of low flow conditions were calculated. Even if the measures selected by national expert were not proposed in local preferences variant. The results are shown in Tab. 11. Intensities and grades were kept the same as proposed by project consortia.

Tab. 11. Assessment of the effectiveness of the local preferences variant (measures proposed by external expert) for improvement of low flow condition

	Number of	8	1		Grading	of the	Program	n of Smal	ll Water	Retent	ion Mea	sures	
	measures Number of						-	1				-	Catchment grade for current
3	SPUs	40		Measure No.	1	2	3	4	5	6	7	8	variant
4		Grade for	r a measure ((total by SPUs):	0,00	13,07	0,00	4,86	12,14	0,00	0,00	0,00	0,79
5	No.	SPU Id	SPU name	Measure Id by User	WRAL	F01	KF	F05	F14	N02	N13	D04	SPU grades
6				F_SPU [km ²]	km2/km2	km/km	-	km2/km2	km/km	km2/km2	km2/km2	km2/km2	
7	1	SPU_01		7,79				4,86	0,22				5,08
8	2	SPU_02		7,33			0,00						0,00
9	3	SPU_03		7,27					0,06				0,06
10	4	SPU_04		9,36		0,14			0,44				0,58
11	5	SPU_05		9,00					0,34				0,34
12	6	SPU_06		8,22					0,09				0,09
13	7	SPU_07		4,23					0,16				0,16
14	8	SPU_08		7,95		0,27			0,41				0,69
15	9	SPU_09		17,20		0,20			0,10				0,30
16	10	SPU_10		4,58		1,17			0,30				1,47
17	11	SPU_11		13,27		2,00			0,34				2,34
18	12	SPU_12		8,59					0,38				0,38
19	13	SPU_13		5,99					0,44				0,44
20	14	SPU_14		10,10		0,00			0,16				0,16
21	15	SPU_15		8,80		0,64			0,15				0,79
22	16	SPU_16		0.04		0.01			0.13				0.15
23	17	SPU_17		0,62		0,49			0,24				0,73
24	18	SPU_18		10,29		0,76			0,41				1,17
25	19	SPU_19		6,04					0,15				0,15
26	20	SPU_20		6,17		0,06			0,19				0,25
27	21	SPU_21		5,84		0,73			0,50				1,23
28	_	SPU 22	·	2.29		-,	-	-	0,52			-	0,52
29		SPU 23		8,17			-	-	0,32	-			0,28
30		SPU_24		4,60		0.11	-	-	0,28			-	0,54
31	25	SPU_25		6.82		0,11			0,10			-	0,20
32		SPU_26		5,61		0,10			0,10				1,41
33	27	SPU_27		8,46		0.01	-		0,30			-	0,27
34		SPU_28		4,54		0,99	-		0,20				1.15
35		SPU 29		3,87		0,99			0,17				0,58
36		SPU_29 SPU_30		7,26		0,26	-	-	0,58	-	-		0,38
37	31	SPU_30 SPU_31		6,06		1,33	-	-	0,12	-	-		2,01
38		SPU_31 SPU_32		5,20		0,67		-	0,68	-			1,34
39	33	SPU_32 SPU_33		7,87		0,56			0,07				0,68
40		SPU_34		11,57		0,38			0,12				0,54
40	35	SPU_34 SPU_35		4.08		0,27	-	-	0,27	-	-		0,54
41	36	SPU_35 SPU_36		6,63		1,08	-	-	0,25	-			1,68
42	35	SPU_36 SPU_37		2,14		0,24		-	0,60	-			0,52
43	37			7,73	-	0,24	-	-	0,28	-			
44	38	SPU_38				0.02							0,37
		SPU_39		3,67		0,03			0,14	-		-	0,17
46	40	SPU_40		5,79		0,00			0,59				0,59

The total grade for area reached is 0.79 which is less than in calculations above. It seems to be not sufficient and further proposals of extents of selected measures should be examined.

4.3. Comparison of variants

The differences between variants result mainly from the spatial distribution, structure and number of planned measures. The expert variant is characterized by a smaller number of measures spread over an area of catchment (4 measure types and there of 1 aggregated measure spread over 35 SPUs). On the contrary, the local variant contains 10 measure types and none of aggragated measures placed in 20 SPUs. Despite these large differences, the assessment ratio of the final score of the expert to local variant is 1.05 (1.77/1.68). Larger differences are noticeable after comparing the spatial distribution, which is shown in Fig. 13 as a difference between local and expert variants. The map shows that the local variant dominates in the middle part of the catchment.

Additionally, by carrying out a visual comparison of both variants (Fig. 14) and the valorization map generated via valorization tool FroGIS (Fig. 2), it can be concluded that introducing the expert variant will reduce the need for water retention in particularly sensitive

areas, except upper parts of the catchment. In the upper parts of the catchment, the need of water retention comes out of idea to protect from floods lower parts of the catchment, which are more inhabited (municipalities). These seems to be in correlation with dynamic modelling results for pilot catchment, for more information see (11). On the other hand, in the local variant, in most cases, it would improve areas with low water retention needs.

Maps of comparison of expert and local preferences variants were created by using the method of natural breaks for six classes.

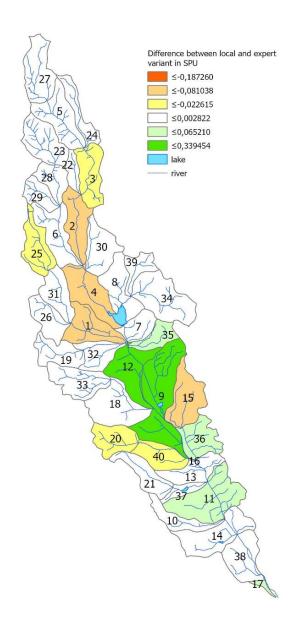


Fig. 10 Map of difference between local preferences and expert variant (green color shows dominance of local variant and red shows the opposite)

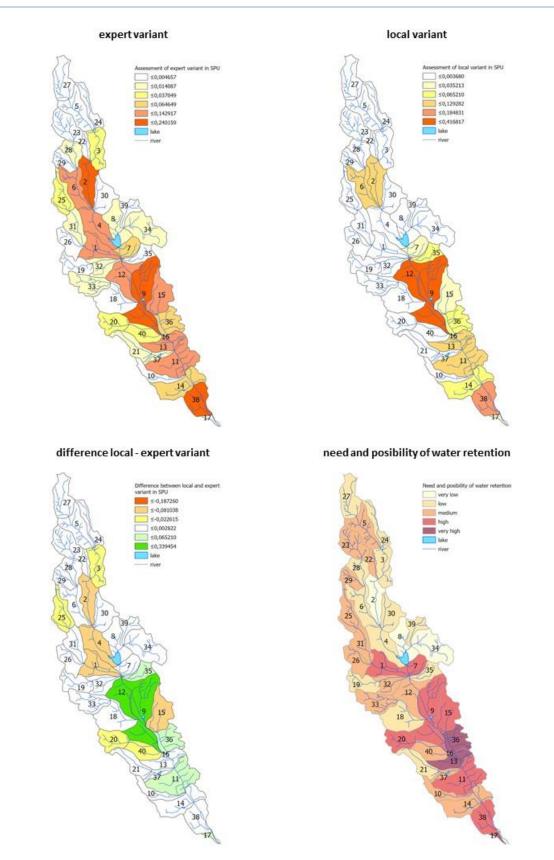


Fig. 11 Visual comparison of local preferences and expert variant assessments with the map of valorisation of needs and water retention possibilities

In the following maps there are visualised differences between expert and local preferences variants analysed within alternative a) where criteria of some measures were changed and alternative b) where only "most efficient measures" for particular goals were selected as described in the chapter 3.

<u>Alternative b)</u> - for each of the local preferences variant we have selected only "most effective measures" for particular goal as high flows, low flows and quality. The differences to expert variant are shown in Fig. 15, 16 and 17.

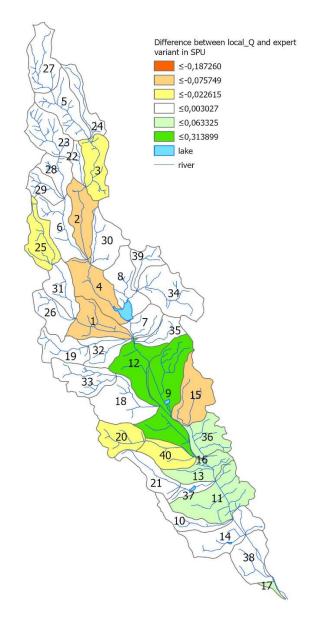


Fig. 12 Map of difference between local preferences variant for quality improvement and expert variant (green color shows dominance of local variant and red shows the opposite)

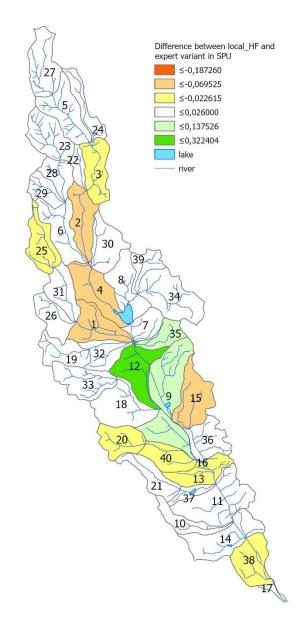


Fig. 13 Map of difference between local preferences variant for improvement of high flow conditions and expert variant (green color shows dominance of local variant and red shows the opposite)

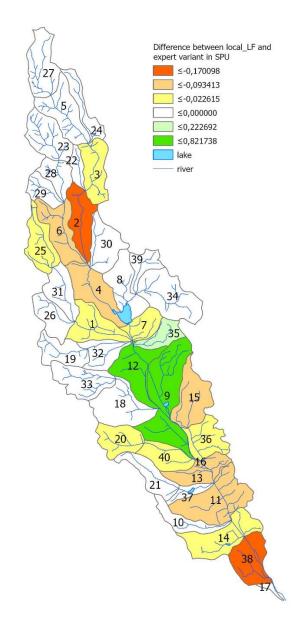


Fig. 14 Map of difference between local preferences variant for improvement of low flow conditions and expert variant (green color shows dominance of local variant and red shows the opposite)

Also based on visual comparison of above showed figures for differences between expert variant and alternatives of local preferences variant, it can be assumed that selection of measures relevant for particular goal (low flow, high flow, quality) is most relevant for low flow conditions.

<u>Alternative a)</u> - where the definition of intensity criteria for some of measures was changed from "km/km²" and "km/km" to "km²/km²". This is relevant only for some of measures proposed

within local preferences variant. See results of differences to expert variant in the following figures Fig. 18, 19, 20 and 21.

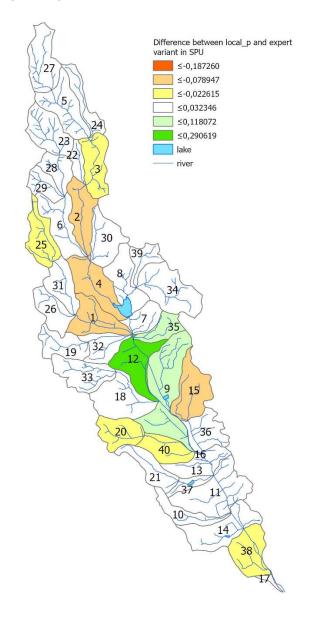


Fig. 15 Map of difference between local preferences with changed criteria and expert variant (green color shows dominance of local variant and red shows the opposite)

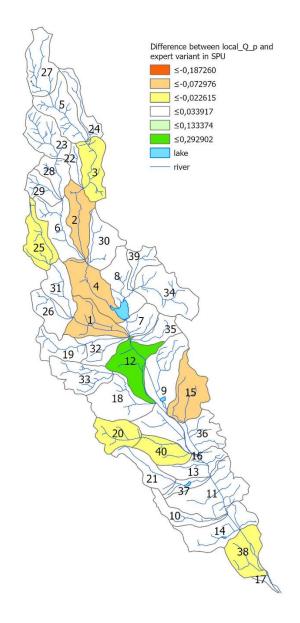


Fig. 16 Map of difference between local preferences variant with changed criteria for quality improvement and expert variant (green color shows dominance of local variant and red shows the opposite)

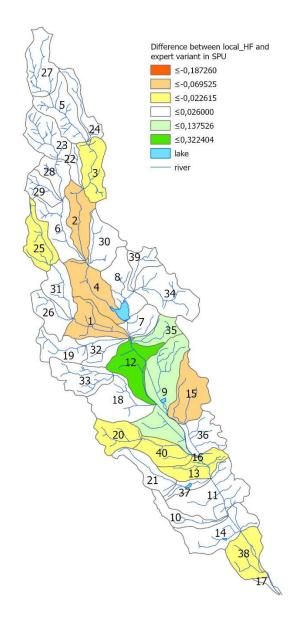


Fig. 17 Map of difference between local preferences variant with changed criteria for improvement of high flow conditions and expert variant (green color shows dominance of local variant and red shows the opposite)

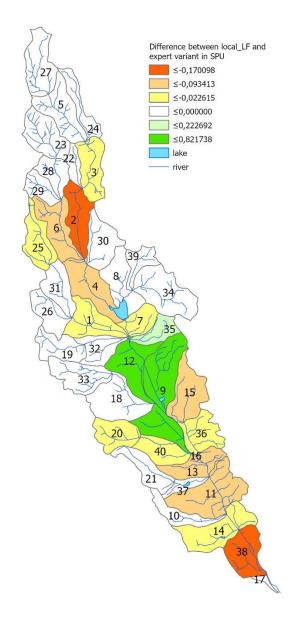


Fig. 18 Map of difference between local preferences variant with changed criteria for improvement of low flow conditions and expert variant (green color shows dominance of local variant and red shows the opposite)

Based on visual comparison of above showed figures for differences between expert variant and alternatives of local preferences variant with changed criteria, the trend is the same as for alternatives of local preferences variant where the most relevant criteria are chosen. Differences are obvious mainly for variant of low flow conditions.

5. CONCLUSIONS

Based on the testing of the StaticMethod and StaticTool.xlsm it can be concluded:

- StaticTool.xlsm seems to work properly even when using the pre-defined criteria and their values
- variant with proposed measures in the upper part of catchment to reduce flood impacts in the lower parts of catchments (municipalities) dynamic modelling results
- to calculate parameters for proposed measures is quite time consuming but feasible

- results in the tool are quite easy to interpreted even for non expert but a short guide how to do it and how to create the map will be efficient

- with the results obtained and after preparing the maps it was easy to compare particular alternatives of natural small water retention measures

6. RECOMMENDATIONS

Based on the experiences with testing of the StaticMethod and StaicTool.xlsm it can be assumed:

- Content related:
 - \circ How to interprate Grades is necessary to explain/to add somewhere in the tool
 - As intensities and maximum grades definitions are country/region/catchment characteristics relevant, it will be efficient to include some recommendations for future users of the tool if gained during the testing by PPs
 - As it is not necessary to use aggregated measure codes to run calculations, it should be mentioned somewhere in the methodology, that calculations will run anyway.
- Functionalities:
 - SK translation of names of aggregated measures is missing. We see it as valuable information for national stakeholders, who will use the tool.
 - SK translations of definitions of intensities criteria are missing. We see it as valuable information for national stakeholders, who will use the tool.
 - It was experienced during the testing that "grey fields" which should be filled-in automatically was necessary to overwrite manually.
 - For local national stakeholders, it would be efficient to provide description of Methodology on static assessment of cumulative effect of N(S)WRM at the river basin scale and of Manual on how to work with Static tool in national languages. It will facilitate wider use of project deliverables.

7. LIST OF FIGURES

Fig.	1 Type and localization of measures proposed for expert variant and for local preferences variant
Fig. Fig	2 Map of needs and possibilities of water retention in SPUs
Fig.	6 Map of assessment of the effectiveness of the local preferences variant for improvement of high flow conditions
Fig.	7 Map of assessment of the effectiveness of the local preferences variant for improvement of low flow conditions
Fig.	 8 Map of assessment of the local preferences variant with changed criteria at the SPU level . 26 9 Map of assessment of the effectiveness of the local preferences variant with changed criteria for quality improvement
Fig.	13 Map of difference between local preferences and expert variant (green color shows dominance of local variant and red shows the opposite)
Fig.	14 Visual comparison of local preferences and expert variant assessments with the map of valorisation of needs and water retention possibilities
Fig.	15 Map of difference between local preferences variant for quality improvement and expert variant (green color shows dominance of local variant and red shows the opposite)
Fig.	16 Map of difference between local preferences variant for improvement of high flow conditions and expert variant (green color shows dominance of local variant and red shows the opposite) 32
Fig.	17 Map of difference between local preferences variant for improvement of low flow conditions and expert variant (green color shows dominance of local variant and red shows the opposite) 33
-	 18 Map of difference between local preferences with changed criteria and expert variant (green r shows dominance of local variant and red shows the opposite)
Fig.	the opposite)
Fig.	21 Map of difference between local preferences variant with changed criteria for improvement of low flow conditions and expert variant (green color shows dominance of local variant and red shows the opposite)

8. LIST OF TABLES

Tab.	1 Basic parameters of proposed measures for expert variant (Exp) and for local preferences variant (Loc)
Tab.	2 Aggregated measures identification - expert variant
Tab.	3 Aggregated measure identification - local preferences variant
Tab.	4 Impact of measures on three elements of the catchment retention properties - expert variant
Tab.	5 Impact of measures on three elements of the catchment retention properties - local variant
Tab.	6 List of parameters for measures in expert variant 10
Tab.	7 List of parameters for measures in local preferences variant

9. REFERENCES

- (1) Pusłowska-Tyszewska D., 2019. StaticTool method and the StaticTool_2020.xlsm application. INTERREG CE project Framwat manuscript.
- (2) Tyszewski S., Herbich P., Porretta Brandyk L., 2019. Elaboration and testing of the static tool along with personal participation in the project meeting in Cracov : 20-21 November 2019. INTERREG CE project Framwat manuscript.
- (3) D.T1.3.1 Report from pilot action testing the prototype of the FroGIS tool in the river basins, Testing in the Blh pilot catchment.
- (4) D.T2.3.1 Concept plan for N(S)WRM in river basins, Pilot catchment Blh, SWME.
- (5) Kočický, D., Maretta, M., 2014. Zhodnotenie možného vplyvu existujúcich a navrhovaných preventívnych opatrení v povodí na dosiahnutie cieľov plánu manažmentu povodňového rizika. Štúdia. ESPRIT, spol. s r. o. Banská Štiavnica.
- (6) Čomaj M., 2016. Posúdenie protipovodňovej äčinnosti vybraných druhov opatrení zelenej infraštruktúry podľa metodiky NWRM. Závrečná správa. Bratislava, január 2017.
- (7) Styk, J., 2019: Erózia pôd, In: Kobza, J., Barančíková, G., Makovníková, J., Pálka, B., Styk, J., Širáň, M. 2019. Komplexné zhodnotenie aktuálneho stavu senzitívneho územia Krompachy Rudňany a okolie s dopadom na riešenie pôdoochranných opatrení. NPPC VUPOP, Bratislava, 2019, s. 55 61. ISBN 978-80-8163-028-6.
- (8) Styk, J., 2014. Návrh regulačných pôdoochranných opatrení. Erózia pôdy, In: Kobza, J., Barančíková, G., L., Dodok, R., Hrivňáková, K., Makovníková, J., Pálka, B., Pavlenda, P., Schlosserová, J., Styk, J., Širáň, M., 2014. Monitoring pôd Slovenskej republiky. Súčasný stav a vývoj monitorovaných vlastností pôd ako podklad k ich ochrane a ďalšiemu využívaniu (2007 - 2012). Výsledky Čiastkového monitorovacieho systému - Pôda, ako súčasť Monitoringu životného prostredia za obdobie 2007-2012 (4. cyklus). NPPC - Výskumný ústav pôdoznalectva a ochrany pôdy Bratislava, 2014, s. 234 - 241. ISBN 978-80-8163-004-0
- (9) Styk, J., Pálka, B., Granec, M., 2009. Využitie on-line aplikácie pri predikcii pôdnej erózie spôsobenej vodou (Utilization of on-line application for the prediction of soil erosion caused by water). In: Proceedings. Vedecké práce č. 31. VÚPOP Bratislava, 2009, s. 176-186. ISBN 978-80-89128-59-4.
- (10) Sobocká, J., Bezák, P., Skalský, R., 2018. Poloautomatické usporiadanie kultúrnych dielov ako protierózne opatrenie. <u>http://www.agroporadenstvo.sk/nove-poznatky-poda?article=1198</u>
- (11) D.T2.4.1 Reports from testing the dynamic model to assess cumulative effect of N(S)WRM (Pilot Action), Slaná river basin, Blh pilot catchment, Slovakia

10. ANNEX

Assessment of effects of natural small water retention measures based on national experiences, elaborated by Mr. Marek Čomaj, Water Research Institute, Bratislava.