

# REPORTS FROM TESTING THE STATIC METHOD TO ASSESS CUMULATIVE EF-FECT OF N(S)WRM (PILOT ACTION)

D.T2.2.2

Version 1 2/2020

Pilot Catchment Kamienna Poland/ WARSAW UNIVERSITY OF LIFE SCENCES – SGGW



Authors: Poland/ WARSAW UNIVERSITY OF LIFE SCIENCES – SGGW Ignacy Kardel, Paweł Osuch, Joanna O'Keeffe, Tomasz Okruszko, Stefan Ignar





# Content

| 1. INTRODUCTION                                          | 3  |
|----------------------------------------------------------|----|
| 2. DESCRIPTION OF INPUT DATA PREPARATION                 | 3  |
| 3. MODIFICATIONS TO THE STATICTOOLS.XLSX TOOL PARAMETERS | 6  |
| 4. DESCRIPTION OF RESULTS                                | 11 |
| 4.1 For the expert variant                               | 11 |
| 4.2 For the variant of local preferences                 | 15 |
| 4.3 Reducing the number of SPUs variant                  | 17 |
| 4.4 Comparison of variants                               | 20 |
| 5. CONCLUSIONS                                           | 21 |
| 6. REFERENCES                                            | 22 |





# 1. INTRODUCTION

The purpose of developing the StaticTool method and the computer application StaticTool.xlsm is to enable the estimation of the effects of the implementation of a program of natural, small water retention measures (PoNSWRM) in a simplified way, which does not require the time-consuming and costly development of detailed hydrological or / and hydraulic models, of the analysed catchment. This method relies on grading and expert knowledge and is used to compare variants of the NSWRM program.

The potential effects of individual NSWR measures may be different, depending on the climatic and physiographic conditions (e.g. slopes, ground permeability) of the analysed area, so the method parameters should be adapted to local conditions (climate type, landscape type). The StaticTool method thus consists of two parts:

- developing method parameters for local conditions,
- estimating the effects of activities planned under the Natural Small Water Retention Program.

The StaticTool method assumes that the expected effect of the PoNSWRM is to improve catchment retention properties, which is understood as increasing low flows (LowQ), reducing high flows (HighQ) and / or limiting the load of pollutants yielded from the catchment area (Qual). This effect depends on the planned measures, in particular: i) their type and ii) their level of intensity. The measures included in the StaticTool method are summarized in the local catalogue of measures. For each measure, an intensity criterion is formulated, and threshold values are defined that correspond to the characteristic intensity levels (low, medium, high). Each measure is also assigned the expected improvement of retention properties in the SPU, expressed on a point scale (0-5 points). The greatest improvement that can be achieved (maximum points for a given measure) corresponds to the implementation of the measure with maximum intensity. For lower intensity levels, the assigned grades are proportional to the level of intensity of planned measure. Hence, developing parameters of the StaticTool method measures and their intensity for each measure from the local catalogue.

The StaticTool method and the StaticTool.xlsm application were developed as part of the project Fram-Wat, Work Package T2 (Effectiveness of the Natural Small Water Retention Measure), activity A.T2.2 (Developing the GIS based method to assess cumulative effect of N(S)WRM at the river basin scale), deliverable D.T2.2.1 (Static method to assess cumulative effect of N(S)WRM in the river basins). A detailed description of the methodology is in a separate file created by the author of the program. This report presents the results of testing the static method (StaticTool.xlsm) to assess cumulative effect of N(S)WRM for the Pilot Catchment Kamienna.

# 2. DESCRIPTION OF INPUT DATA PREPARATION

In the first step, of working with the StaticTool program, it was necessary to specify/select the N(S)WRM type, for which calculations will be carried out in the expert variant and variant of local preferences. The table below (Tab. 1) shows the types of measures implemented in the program in individual variants (all reported measures in the expert and local variants).





#### Tab. 1 The measures in the expert and local preferences variant for the Kamienna catchment.

| No<br>NSWRM | Variant   | Type of NSWRM                                                          | Name                                                     | Parameters                                                                                                                                                                                                 | Count of<br>NSWRM | Area<br>[ha] |
|-------------|-----------|------------------------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------|
| D04         | Exp.      | Construction of micro<br>reservoirs on ditches                         | Construction of micro<br>reservoirs on ditches           | Permanent river step or ford (concrete/stone<br>or wooden depending on the magnitude of<br>streamflow occuring in this river section) about<br>1 m high, about 2 m wide; step height 0.5 m;<br>length 20 m | 29                | 20.61        |
| т03         | Exp.      | Construction of small<br>reservoirs on rivers (dammed<br>reservoirs)   | Dam Biernatka                                            | Changing the shape of the concrete river step<br>which is 3 m wide and dividing it into a double<br>one; making dikes 0.3 m high; 200 m long                                                               | 1                 | 7.98         |
| т03         | Exp.      | Construction of small<br>reservoirs on rivers (dammed<br>reservoirs)   | Reservoir Stary<br>Gostów                                | F = 2.9 ha, mean depth 1 m, construction of a<br>permanent wooden overflow 1.5 m high, 3 m<br>long                                                                                                         | 1                 | 2.86         |
| т03         | Exp.      | Construction of small<br>reservoirs on rivers (dammed<br>reservoirs)   | Dry reservoir Brody<br>Lublianka                         |                                                                                                                                                                                                            | 1                 | 0.83         |
| A08         | Exp.      | Green cover/After-crops                                                | After-crops                                              |                                                                                                                                                                                                            | 22                | 142.18       |
| A02         | Exp.      | Buffer strips and hedges                                               | •                                                        | Planting a tree every 6m                                                                                                                                                                                   | 1709              |              |
| A03         | Exp.      | Crop rotation                                                          | Crop rotation                                            |                                                                                                                                                                                                            | 1                 | 15752        |
| D01         | Exp.      | Regulated outflow from<br>drainage systems                             | Regulated outflow<br>Kochanówka                          | 5 culverts, height 0.9 m width 3 m                                                                                                                                                                         | 1                 | 430.92       |
| D01         | Exp.      | Regulated outflow from<br>drainage systems                             |                                                          | 5 culverts, height 0.9 m width 3 m                                                                                                                                                                         | 1                 | 416.29       |
| D01         | Exp.      | Regulated outflow from<br>drainage systems                             | Reg.Odpływ<br>Swierczek                                  | 5 culverts with damming height 0.9m width 3m                                                                                                                                                               | 1                 | 1796.21      |
| N02         | Exp.      | Wetland restoration and management                                     | Artificial wetland                                       | 1x barrage 1m high, dyke height 0.5m and<br>length 30m                                                                                                                                                     | 2                 | 5.48         |
| N06         | Exp.      | Restoration and reconnection of seasonal streams                       | Oxbow Stoki Stare                                        | 1x wooden dam height 1m, width 10m; 2 x ford<br>height 0.8 width 10m or 2x culvert with<br>damming height 1m, width 3m                                                                                     | 1                 | 3.76         |
| N06         | Exp.      | Restoration and reconnection<br>of seasonal streams                    | Reconstruction of the<br>water supply mill<br>Nietulisko | Permanent river step (max. height 2 m) with a<br>width of 35 m with a bipartite shape increasing<br>the flooding in order to enable fish migration<br>during medium and low water levels.                  | 1                 | 22.26        |
| D01         | Exp.      | Regulated outflow from<br>drainage systems                             | Floodplain restoration<br>and management                 | Land purchase - 63.76 ha                                                                                                                                                                                   | 14                | 342.57       |
| N03         | Exp.      | Floodplain restoration and management                                  | Oxbow Bodzechów                                          | 3 x culverts with damming 1 m wide 3 m, 1<br>wooden dam 1 m wide 5 m, clearing 8 km of<br>ditches                                                                                                          | 1                 | 172.65       |
| F14         | Exp.      | Overland flow areas in<br>peatland forests                             |                                                          | Wooden dam height 1 m or ford height 0.8 m<br>and width 3 m                                                                                                                                                | 19                | 1042.47      |
| F14         | Exp.      | Overland flow areas in<br>peatland forests                             | Odrowążek                                                |                                                                                                                                                                                                            | 1                 | 13.94        |
| F08         | Exp.      | Appropriate design of roads<br>and stream crossings                    | The ferry Mostki                                         | Length approx 30 m, width 4 m                                                                                                                                                                              | 1                 |              |
| D02         | Exp.      | Water damming in ditches,<br>weirs with constant crest<br>(vallevs)    | Retention trough<br>Kunów                                | One river step height: 0.5-1.5 m, width 30 m                                                                                                                                                               | 1                 | 5.09         |
| F01         | Exp.      | Forest riparian buffers                                                |                                                          | Planting a tree every 6m                                                                                                                                                                                   | 168               |              |
| т03         | Exp.+Loc. | Construction of small<br>reservoirs on rivers (dammed<br>reservoirs)   | Reservoir Mroczków                                       | Area of approximately 5 hectares, damming<br>height of about 3 m                                                                                                                                           | 1                 | 7.76         |
| Т03         | Exp.+Loc. | Construction of small<br>reservoirs on rivers (dammed<br>reservoirs)   | Reservoir Bzin                                           | F = estimated surface 100 ha damming height<br>of about 6 m                                                                                                                                                | 1                 | 100          |
| Т03         | Exp.+Loc. | Construction of small<br>reservoirs on rivers (dammed<br>reservoirs)   | Reservoir Górki-Gilów                                    | F = approximately 3 hectares, damming height<br>of about 1.5 m                                                                                                                                             | 1                 | 3.26         |
| т03         | Exp.+Loc. | Construction of small<br>reservoirs on rivers (dammed<br>reservoirs)   | Reservoir Wołów                                          | F=33,7 ha; VNPP=674000 m3; V=253000 m3                                                                                                                                                                     | 1                 | 33.7         |
| A03         | Exp.+Loc. | Buffer strips and hedges                                               |                                                          | Planting a tree every 6m                                                                                                                                                                                   | 104               |              |
| T01         | Exp.+Loc. | Polders, dry flood protection<br>reservoirs, sediment trapping<br>dams | Dry reservoir<br>Jędrzejowice                            | Reservoir area: 5.6 ha, Total capacity: 162,700<br>m3, damming dam length - approx. 115 m,<br>height in relation to the bottom of the valley<br>13 m                                                       | 1                 | 1            |







| No<br>NSWRM | Variant   | Type of NSWRM                                                          | Name                                               | Parameters                                                                                                                                                     | Count of | Area<br>[ha]    |
|-------------|-----------|------------------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------------|
| T01         | Exp.+Loc. | Polders, dry flood protection<br>reservoirs, sediment trapping<br>dams | Dry reservoir<br>Mychałów Kol.1                    | Reservoir area: 0.82 ha, total capacity: 18 400<br>m3, damming dam length - about 75 m, height<br>in relation to the bottom of the valley - 8 m                | 1        | 0.82            |
| T01         | Exp.+Loc. | Polders, dry flood protection<br>reservoirs, sediment trapping<br>dams | Dry reservoir<br>Mychałów Kol.2                    | Reservoir area: 4.9 ha, total capacity: 163,900<br>m3, damming dam length - about 170 m,<br>height in relation to the valley bottom - 14 m                     | 1        | 4.9             |
| T01         | Exp.+Loc. | Polders, dry flood protection<br>reservoirs, sediment trapping<br>dams | Dry reservoir<br>Mychałów Kol.3                    | Reservoir area: 4.9 ha, total capacity: 276 300 m3, damming dam length - approx. 135 m, height in relation to the valley bottom - 15 m                         | 1        | 4.9             |
| T02         | Exp.+Loc. | Widenning or removing of<br>flood protection dikes                     | Increasing the spaces<br>between dikes             | 9 sections of new dikes with a total length of<br>4,905 linear meters                                                                                          | 1        |                 |
| D03         | Loc.      | Active water management on<br>a drainage system (river<br>valleys)     | Reconstruction of the<br>Styków pumping<br>station |                                                                                                                                                                | 1        |                 |
| D04         | Loc.      | Construction of micro<br>reservoirs on ditches                         | Construction of micro<br>reservoirs on ditches     | Permanent damming or ford (concrete / stone<br>or wood depends on the strength of the water)<br>about 1m high, about 2m wide; dyke height<br>0.5m; length 20 m | 1        | 5.23            |
| т03         | Loc.      | Construction of small<br>reservoirs on rivers (dammed<br>reservoirs)   | Weir Brody Iłzycikie<br>renovation                 |                                                                                                                                                                | 1        | 0.32            |
| т03         | Loc.      | Construction of small<br>reservoirs on rivers (dammed<br>reservoirs)   | Reservoir Boria                                    | An area of 99 hectares                                                                                                                                         | 1        | 99              |
| тоз         | Loc.      | Construction of small<br>reservoirs on rivers (dammed<br>reservoirs)   | Reservoir Lemierze (2<br>- Baltow)                 | The length of about 1.9 km; average width -<br>460 m.                                                                                                          | 1        | 89.34           |
| т03         | Loc.      | Construction of small<br>reservoirs on rivers (dammed<br>reservoirs)   | Reservoir Michałów                                 | Length - 2000 m, an average width of 180 m,<br>the average height - 2.5 m.                                                                                     | 1        | 125.34          |
| т03         | Loc.      | Construction of small<br>reservoirs on rivers (dammed<br>reservoirs)   | Reservoir Rudka<br>Bałtowska (nr 1 -<br>Bałtów)    | Length 2.9 km; average width 400 m                                                                                                                             | 1        | 240.53          |
| т03         | Loc.      | Construction of small<br>reservoirs on rivers (dammed<br>reservoirs)   | Reservoir Ćmielów                                  | Area of 24 ha                                                                                                                                                  | 1        | 24              |
| т03         | Loc.      | Construction of small<br>reservoirs on rivers (dammed<br>reservoirs)   | Reservoir Ruda<br>Kościelna                        | Area 78 ha                                                                                                                                                     | 1        | 78              |
| D01         | Loc.      | Regulated outflow from<br>drainage systems                             | Regulated outflow<br>Lipowe Pole                   | Renovation / modernization of closures - 2<br>weirs and a minimum of 5 valves or culverts<br>with damming                                                      | 1        | 351.87          |
| N02         | Loc.      | Wetland restoration and management                                     |                                                    | 3 x culverts with damming height 1 m width 3 m;                                                                                                                | 1        | 114.42          |
| F06         | Loc.      | Continuous cover forestry                                              |                                                    | Area: 685.94 ha                                                                                                                                                | 3        | 685.94<br>(148) |
| F08         | Loc.      | Appropriate design of roads<br>and stream crossings                    | Raising the elevation<br>of the road               | Renovation of a 2-lane asphalt road over a distance of 400 m, possibly replacement of a concrete rectangular culvert about 4 m wide                            | 1        |                 |





At the initial stage, individual N(S)WRMs were merged into one (of the same) type and then aggregation was performed. Aggregated measures include a group of measures whose implementation improves in a similar way the retention properties of the catchment area. Assessment of the effects of individual activities, without detailed field or model studies at the current level of knowledge, is not possible. Finally, 11 records were received as part of the expert variant and 8 for local variant (Tab.2 - Tab. 3).

| No | Aggregated | Aggregated measure                                                         |
|----|------------|----------------------------------------------------------------------------|
|    | measure ID |                                                                            |
| 1  | A02        | Buffer strips and hedges                                                   |
| 2  | WRAL       | WRAL - best practices for Water Retention in Agricultural Lands            |
| 3  | F01        | Forest riparian buffers                                                    |
| 4  | F08        | Appropriate design of roads and stream crossings                           |
| 5  | F14        | Overland flow areas in peatland forests                                    |
| 6  | ER         | ER - Ecosystems Restoration / renaturisation of water dependent ecosystems |
| 7  | N06        | Restoration and reconnection of seasonal streams                           |
| 8  | BPDA       | BPDA - Best practices on drained areas                                     |
| 9  | T1         | Polders, dry flood protection reservoirs, sediment trapping dams           |
| 10 | T2         | Widening or removing of flood protection dikes                             |
| 11 | T3         | Construction of small reservoirs on rivers (dammed reservoirs)             |

Tab. 2 Aggregated measure - expert variant

Tab. 3 Aggregated measure - variant of local preferences.

| No | Aggregated | Aggregated measure                                               |
|----|------------|------------------------------------------------------------------|
|    | measure ID |                                                                  |
| 1  | A02        | Buffer strips and hedges                                         |
| 2  | F06        | Continuous cover forestry                                        |
| 3  | F08        | Appropriate design of roads and stream crossings                 |
| 4  | BPDA       | BPDA - Best practices on drained areas                           |
| 5  | T1         | Polders, dry flood protection reservoirs, sediment trapping dams |
| 6  | T2         | Widening or removing of flood protection dikes                   |
| 7  | T3         | Construction of small reservoirs on rivers (dammed reservoirs)   |

For each measure the intensity criteria and the threshold values for characteristic intensity levels were defined. According to the assumptions of the StaticTool method, the expected improvement in the catchment retention properties depends on the type and level of intensity of planned measures. Three levels of measures' intensity were distinguished: low, medium and high. They correspond to three levels of the expected improvement in the catchment retention properties (e.g. small, average and large). Four threshold values were used: T0 - no action, Tlow - the boundary between low and medium intensity, Thigh - the limit between medium and high intensity and Tmax, which corresponds to the maximum (hypothetically) possible intensity of measure. There were determined by expert assessments of the impact of aggregated measures on three elements of the catchment retention properties (low flows, high flows and erosion), with maximum intensity of measures' application. There was a need to formulate a general assessment of measures. The tables below show the parameters used for calculations in the local and expert variants (Tab. 4- Tab. 7).





Tab. 4 The assessment of the impact of aggregated measures on three elements of the catchment retention properties (6-grade scale was adopted, 0 - 5, where 0 means no positive impact on the retention of the catchment area, and 5 - very high positive impact) - expert variant.

| No | Code | Aggregated                                      | Low   | High  | Qual Ero- | AVG  |
|----|------|-------------------------------------------------|-------|-------|-----------|------|
|    |      | measure name                                    | flows | flows | sion      |      |
| 1  | A02  | Buffer strips and hedges                        | 1     | 1     | 3         | 1.67 |
| 2  | WRAL | WRAL - best practices for Water Retention in    | 0     | 2     | 4         | 2.00 |
|    |      | Agricultural Lands                              |       |       |           |      |
| 3  | F01  | Forest riparian buffers                         | 0     | 1     | 3         | 1.33 |
| 4  | F08  | Appropriate design of roads and stream cross-   | 0     | 2     | 1         | 1.00 |
|    |      | ings                                            |       |       |           |      |
| 5  | F14  | Overland flow areas in peatland forests         | 1     | 3     | 2         | 2.00 |
| 6  | ER   | ER - Ecosystems Restoration / renaturisation of | 0     | 5     | 4         | 3.00 |
|    |      | water dependent ecosystems                      |       |       |           |      |
| 7  | N06  | Restoration and reconnection of seasonal        | 0     | 2     | 2         | 1.33 |
|    |      | streams                                         |       |       |           |      |
| 8  | BPDA | BPDA - Best practices on drained areas          | 2     | 3     | 2         | 2.33 |
| 9  | T1   | Polders, dry flood protection reservoirs, sedi- | 0     | 5     | 3         | 2.67 |
|    |      | ment trapping dams                              |       |       |           |      |
| 10 | T2   | Widening or removing of flood protection dikes  | 0     | 3     | 3         | 2.00 |
| 11 | T3   | Construction of small reservoirs on rivers      | 4     | 4     | 2         | 3.33 |
|    |      | (dammed reservoirs)                             |       |       |           |      |

Tab. 5 The assessment of the impact of aggregated measures on three elements of the catchment retention properties (6-grade scale was adopted, 0 - 5, where 0 means no positive impact on the retention of the catchment area, and 5 - very high positive impact) - local variant.

| No | Code | Aggregated measure name                                             | Low flows | High<br>flows | Qual Ero-<br>sion | AVG  |
|----|------|---------------------------------------------------------------------|-----------|---------------|-------------------|------|
| 1  | A02  | Buffer strips and hedges                                            | 1         | 1             | 3                 | 1.67 |
| 2  | F06  | Continuous cover forestry                                           | 0         | 0             | 0                 | 0.00 |
| 3  | F08  | Appropriate design of roads and stream crossings                    | 0         | 2             | 1                 | 1.00 |
| 4  | BPDA | BPDA - Best practices on drained areas                              | 2         | 3             | 2                 | 2.33 |
| 5  | T1   | Polders, dry flood protection reservoirs, sediment trapping dams    | 0         | 5             | 3                 | 2.67 |
| 6  | T2   | Widening or removing of flood protec-<br>tion dikes                 | 0         | 3             | 3                 | 2.00 |
| 7  | Т3   | Construction of small reservoirs on riv-<br>ers (dammed reservoirs) | 4         | 4             | 2                 | 3.33 |





Tab. 6 List of parameters for measures in expert variant.

| No | Moscuro ID   | Aggrogated                                                                       | Definition of the intensity criteria                                                                                                           | teria Intensity thresholds Grade u |      | Grada may | Grade thresholds [%] |           |     |       | Grade values |       |      |      |       |      |
|----|--------------|----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|------|-----------|----------------------|-----------|-----|-------|--------------|-------|------|------|-------|------|
| NO | iviedsure ID | Aggregated                                                                       | in English                                                                                                                                     | т0                                 | Tlow | Thigh     | Tmax                 | Grade_max | E%0 | E%low | E%high       | E%max | EO   | Elow | Ehigh | Emax |
| 1  | A02          | Buffer strips and hedges                                                         | Buffer strips density - total lenght<br>of strips and SPU area ratio<br>[km/km2]                                                               | 0.00                               | 0.50 | 2.00      | 6.00                 | 3         | 0   | 60    | 95           | 100   | 0.00 | 1.80 | 2.85  | 3.00 |
| 2  | WRAL         | WRAL - best practices for Water<br>Retention in Agricultural Lands               | Arable land area on which best<br>practices of water retention are<br>applied and SPU area ratio<br>[km2/km2]                                  | 0.00                               | 0.30 | 0.80      | 1.00                 | 3         | 0   | 30    | 80           | 100   | 0.00 | 0.90 | 2.40  | 3.00 |
| 3  | F01          | Forest riparian buffers                                                          | Total lenght of forest riparian<br>buffers and doubled lenght of<br>water courses in SPU ratio [km/km]                                         | 0.00                               | 0.30 | 0.70      | 1.00                 | 2         | 0   | 30    | 70           | 100   | 0.00 | 0.60 | 1.40  | 2.00 |
| 4  | F08          | Appropriate design of roads and stream crossings                                 | Forest area under Best Forestry<br>Practices and SPU area ratio<br>[km2/km2]                                                                   | 0.00                               | 0.70 | 0.95      | 1.00                 | 2         | 0   | 10    | 40           | 100   | 0.00 | 0.20 | 0.80  | 2.00 |
| 5  | F14          | Overland flow areas in peatland forests                                          | Length of forest water courses<br>under best practices and total<br>length of water courses in the SPU<br>ratio [km/km]                        | 0.00                               | 0.20 | 0.60      | 1.00                 | 3         | 0   | 20    | 60           | 100   | 0.00 | 0.60 | 1.80  | 3.00 |
| 6  | ER           | ER - Ecosystems Restoration /<br>renaturisation of water<br>dependent ecosystems | Total area of restored (and<br>managed) wetlands, floodplains<br>and reconnected ox-bows and SPU<br>area ratio [km2/km2]                       | 0.00                               | 0.10 | 0.40      | 1.00                 | 5         | 0   | 60    | 95           | 100   | 0.00 | 3.00 | 4.75  | 5.00 |
| 7  | N06          | Restoration and reconnection of seasonal streams                                 | Total length of restored water<br>bodies (natural stream bed, bank<br>protection removal, etc) and water<br>bodies length in SPU ratio [km/km] | 0.00                               | 0.20 | 0.60      | 1.00                 | 2         | 0   | 20    | 60           | 100   | 0.00 | 0.40 | 1.20  | 2.00 |
| 8  | BPDA         | BPDA - Best practices on<br>drained areas                                        | Drained area under Best DA<br>Practices and SPU area ratio<br>[km2/km2]                                                                        | 0.00                               | 0.05 | 0.15      | 1.00                 | 4         | 0   | 60    | 95           | 100   | 0.00 | 2.40 | 3.80  | 4.00 |
| 9  | T1           | Polders, dry flood protection<br>reservoirs, sediment trapping<br>dams           | Catchment area upstream of<br>measure (polder, dry reservoir) and<br>SPU area ratio [km2/km2]                                                  | 0.00                               | 0.05 | 0.20      | 1.00                 | 4         | 0   | 60    | 95           | 100   | 0.00 | 2.40 | 3.80  | 4.00 |
| 10 | T2           | Widening or removing of flood<br>protection dikes                                | Active floodplain area and max<br>(during HHQ) floodplain area in SPU<br>ratio [km2/km2]                                                       | 0.00                               | 0.05 | 0.20      | 1.00                 | 3         | 0   | 60    | 95           | 100   | 0.00 | 1.80 | 2.85  | 3.00 |
| 11 | T3           | Construction of small reservoirs<br>on rivers (dammed reservoirs)                | Total volume of storage reservoirs<br>and yearly water yield ratio<br>[m3/m3]                                                                  | 0.00                               | 0.05 | 0.20      | 1.00                 | 5         | 0   | 60    | 95           | 100   | 0.00 | 3.00 | 4.75  | 5.00 |





Tab. 7 List of parameters for measures in local variant.

| AggregN     | 7  |            |                                        |                                            |                                                                                             |                                                                                                                               | Intensity thresholds |      |       |      |           | Grade th | resh <i>o</i> lds [ | Grade values |       |      |      |       |      |
|-------------|----|------------|----------------------------------------|--------------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|----------------------|------|-------|------|-----------|----------|---------------------|--------------|-------|------|------|-------|------|
| No sort_AVG | No | Measure ID | Aggregated English                     | Aggregated measure in Polish               | Definition of the intensity criteria in English                                             | a się własności zlewni; niekorzystne przekształce                                                                             | то                   | Tlow | Thigh | Tmax | Grade_max | E%0      | E%low               | E%high       | E%max | EO   | Bow  | Ehigh | Emax |
| з           | 1  | A02        | Buffer strips and hedges               | Pasy buforowe i żywopłoty                  | Buffer strips density - total lenght of strips<br>and SPU area ratio [km/km2]               | Długość pasów buforowych na jednostkę<br>powierzchni SPU [km/km2]                                                             | 0.00                 | 0.50 | 2.00  | 6.00 | 3         | 0        | 60                  | 95           | 100   | 0.00 | 1.80 | 2.85  | 3.00 |
| 1           | 2  | F06        | Continuous cover forestry              | Utrzymanie lasów (ograniczenie ilości i    | (-) There is no change in hydrological<br>conditions; undesirabled impacts are<br>prevented | (-) Nie zmieniają się własności zlewni;<br>niekorzystne przekształcenia nie zachodzą                                          | 0.00                 | 0.00 | 0.00  | 0.00 | 0         | 0        | 0                   | 0            | 0     | 0.00 | 0.00 | 0.00  | 0.00 |
| 2           | 3  | F08        | Appropriate design of roads and stree  | a Właściwe projektowanie dróg i przepra    | Forest area under Best Forestry Practices and<br>SPU area ratio [km2/km2]                   | Stosunek powierzchni lasów, na których<br>stosowane są dobre praktyki gospodarki<br>leśnej, do powierzchni SPU [km2/km2]      | 0.00                 | 0.70 | 0.95  | 1.00 | 2         | 0        | 10                  | 40           | 100   | 0.00 | 0.20 | 0.80  | 2.00 |
| 5           | 4  | BPDA       | BPDA - Best practices on drained area  | BPDA - Dobre praktyki na terenach zdrei    | Drained area under Best DA Practices and SPU<br>area ratio [km2/km2]                        | stosunek powierzchni obszarow<br>zdrenowanych, na których stosowane są dobre<br>praktyki ochony wód, do powierzchni SPU       | 0.00                 | 0.05 | 0.15  | 1.00 | 4         | 0        | 60                  | 95           | 100   | 0.00 | 2.40 | 3.80  | 4.00 |
| 6           | 5  | Τ1         | Polders, dry flood protection reservoi | i Suche zbiorniki / poldery (na terenach r | Catchment area upstream of measure (polder,<br>dry reservoir) and SPU area ratio [km2/km2]  | Stosunek powierzchni zlewni zamkniętej<br>obiektem (polder, suchy zbiornik) i<br>powierzchni SPU [km2/km2]                    | 0.00                 | 0.05 | 0.20  | 1.00 | 4         | 0        | 60                  | 95           | 100   | 0.00 | 2.40 | 3.80  | 4.00 |
| 4           | 6  | T2         | Widening or removing of flood protec   | tZwiększanie rozstawy, usuwanie obwało     | Active floodplain area and max (during HHQ)<br>floodplain area in SPU ratio [km2/km2]       | Stosunek powierzchni czynnych terenów<br>zalewowych i całkowitej powierzchni terenów<br>zalewowych (przy WWQ) w SPU [km2/km2] | 0.00                 | 0.05 | 0.20  | 1.00 | 3         | 0        | 60                  | 95           | 100   | 0.00 | 1.80 | 2.85  | 3.00 |
| 7           | 7  | T3         | Construction of small reservoirs on ri | Małe zbiorniki / podpiętrzenia na rzece    | Total volume of storage reservoirs and yearly<br>water yield ratio [m3/m3]                  | Stosunek pojemności całkowitej zbiornika i<br>SSQ w przekroju zamykającym SPU [m3/m3]                                         | 0.00                 | 0.05 | 0.20  | 1.00 | 5         | 0        | 60                  | 95           | 100   | 0.00 | 3.00 | 4.75  | 5.00 |





For each planned measure (in SPUs), its intensity was given, expressed in accordance with the adopted intensity criterion definitions. For each SPU in the columns corresponding to individual measures, their intensity was provided, with the value 0 meaning no measure in the given SPU, and 1 - planning the measure with the maximum possible intensity. Intensity levels for 187 SPUs were determined for the Kamienna catchment.

# 3. MODIFICATIONS TO THE STATICTOOLS.XLSX TOOL PARAMETERS

Defining the measures of the intensity and determining the thresholds for the characteristic levels of intensity (low, medium, high) was done with methodology developed by the company Pro-Woda (Tyszewski S. 2019). This company proposed that the assessment should be carried out in the following manner:

- a team of 3 specialists prepared a preliminary version of the table for assessing the impact of measures on the three adopted retention rates of the catchment (**Błąd! Nie można odnaleźć źródła odwołania.**).

- This table was forwarded to other experts and the FramWat Team. Each of the experts made such assessments for all 23 catalog measures and in dubious situations posted comments,

- On 10/12/2019, a seminar was organized at the SGGW headquarters devoted to these issues in order to determine the final form of the matrix of assessments of the impact of individual activities from the local catalog on the three above-mentioned retention rates of the drainage basin:

ODi, j = { LowQi, HighQi, Quali } where: i =1, 2, ..., LD; j = 1, 2, 3

The meeting was attended by experts of Pro-Woda (Piotr Herbich, Andrzej Brandyk, Sylwester Tyszewski, Wiesław Fiałkiewicz; Ryszard Majewicz), invited experts (Jan Szatyłowicz, Laura Brandyk) and the Fram-Wat Team (Ignacy Kardel, Dorota Mirosław-Świątek, Paweł Marcinkowski, Dorota Pusłowska-Tyszewska).

At the meeting, each of the experts / expert groups presented their own proposal of the assessment table together with a justification, then joint (final) assessments of the impact on low flows (LowQi), high flows (HighQi) and limiting the load of outgoing pollutants (Quali) were established in the form of discussions for each of the local catalog activities. A joint (global) impact assessment (OGDi) of individual measures on the catchment area retention (SPU) was also established. It was proposed that the global rating will be calculated as the average of partial grades:

 $OGDi = (LowQi + HighQi + Quali) / 3 \quad for i = 1, 2, ..., LD$ 

The results of this step were given in the last columns of Błąd! Nie można odnaleźć źródła odwołania..





Tab. 8 Expert assessment of NWRM impact on catchment retention properties - for maximum intensity level

Increasing low flows (*LowQ*), reducing high flows (*HighQ*) and limiting the load of generated pollution (*Qual*)

|       |                                                                                    | Initial va<br>Impact o | luea<br>n (0-5): |                   | Accepted values<br>Impact on (0-5): |               |                   |     |  |  |  |
|-------|------------------------------------------------------------------------------------|------------------------|------------------|-------------------|-------------------------------------|---------------|-------------------|-----|--|--|--|
| Code  | Measures (NWRM/NSWRM)                                                              | Low<br>flows           | High<br>flows    | Qual Ero-<br>sion | Low<br>flows                        | High<br>flows | Qual Ero-<br>sion | AVG |  |  |  |
| A02   | Buffer strips and hedges                                                           | 1                      | 1                | 3                 | 1                                   | 1             | 3                 | 1.7 |  |  |  |
| WRAL  | WRAL - best practices for Water<br>Retention in Agricultural Lands                 | 1                      | 2                | 5                 | 0                                   | 2             | 4                 | 2.0 |  |  |  |
| F01   | Forest riparian buffers                                                            | 0                      | 0                | 3                 | 0                                   | 1             | 3                 | 1.3 |  |  |  |
| KF    | KF - Keeping forests                                                               | 0                      | 0                | 0                 | 0                                   | 0             | 0                 | 0.0 |  |  |  |
| F04   | Targeted planting for 'catching'<br>precipitation; Mediterrenian re-<br>gion       | 0                      | 0                | 0                 | 0                                   | 0             | 0                 | 0.0 |  |  |  |
| BFP   | BFP - Best forestry practices                                                      | 0                      | 2                | 1                 | 0                                   | 2             | 1                 | 1.0 |  |  |  |
| BPFWC | BPFWC - Best Practices for Forest<br>Water Courses                                 | 1                      | 3                | 2                 | 1                                   | 3             | 2                 | 2.0 |  |  |  |
| ER    | ER - Ecosystems Restoration /<br>renaturisation of water depend-<br>ent ecosystems | 2                      | 5                | 4                 | 0                                   | 5             | 4                 | 3.0 |  |  |  |
| BPDA  | BPDA - Best practices on drained areas                                             | 1                      | 3                | 2                 | 2                                   | 3             | 2                 | 2.3 |  |  |  |
| Т1    | Polders, dry flood protection res-<br>ervoirs, sediment trapping dams              | 0                      | 4                | 3                 | 0                                   | 5             | 3                 | 2.7 |  |  |  |
| Т2    | Widening or removal of flood pro-<br>tection dikes                                 | 0                      | 3                | 3                 | 0                                   | 3             | 3                 | 2.0 |  |  |  |
| тз    | Construction of small reservoirs on rivers (dammed reservoirs)                     | 4                      | 4                | 2                 | 4                                   | 4             | 2                 | 3.3 |  |  |  |

# 4. DESCRIPTION OF THE RESULTS

#### 4.1 For the expert variant

The results of the assessment were obtained from the StaticAssessment tab (Tab. 9). This tab contains a table with the cumulative assessment for the entire catchment and partial assessments for each group of measures and for each SPU. The obtained results show that the highest impact on the final grade had buffer strips and hedges (A2 = 30.43), best practices on drained areas (BPDA = 24.63) and construction of small reservoirs on rivers (T3 = 23.52). In order to assess a single SPU while taking into account the size of the catchment area, additional calculations were made according to the following equation SPUgrades \* F\_SPU /  $\Sigma$  F\_SPU. The results are shown in Tab. 9 and Fig. 1. The greatest impact on the final assessment had SPU 82 and 92, which are characterized by a large catchment area and proposed A2 measures. Next is SPU 33 with proposed reservoirs (T3). The SPU rating which does not take into account the area shows different results: the highest rating was obtained by SPU 105 in which reservoirs T3 are planned. In a situation where the SPUs have different sizes, comparing their ratings is questionable. The final rating for the catchment also depends largely on the size of the SPUs. This variant contained a large number of





measures with low efficiency, therefore the SPU assessment results are spatially dispersed and their discrepancies are small. The overall rating for this option is 0.71.

| Number of<br>measures | 11      |                                                                                   |                          | Grading | g of the | Program | n of Sma | all Wate | r Reten  | tion Me | asures  | _       |         |       |                                        |        |
|-----------------------|---------|-----------------------------------------------------------------------------------|--------------------------|---------|----------|---------|----------|----------|----------|---------|---------|---------|---------|-------|----------------------------------------|--------|
| Number of<br>SPUs     | 227     |                                                                                   | Measure No.              | 1       | 2        | 3       | 4        | 5        | 6        | 7       | 8       | 9       | 10      | 11    | Catchment grade<br>for current variant | SPU    |
|                       |         | Grade for a measure                                                               | (total by SPUs):         | 30.43   | 18.66    | 2.91    | 0.00     | 5.99     | 6.85     | 0.12    | 24.63   | 7.80    | 2.94    | 23.52 | 0.71                                   | grades |
| No.                   | SPUId   | SPII name                                                                         | Measure Id by<br>User    | A02     | WRAL     | F01     | F08      | F14      | ER       | N06     | BPDA    | T1      | T2      | тз    | SPU grades                             | Sum_F_ |
|                       |         |                                                                                   | F_SPU [km <sup>2</sup> ] | km/km2  | km2/km2  | km/km   | km2/km2  | km/km    | km2/km2  | km/km   | km2/km2 | km2/km2 | km2/km2 | m3/m3 |                                        | SPU    |
| 6                     | Sub_06  | Oleśnica od dopł. spod Łazów do dopł. z Lipowego Pola (I                          | 2.16                     |         |          |         |          | 2.62     |          |         | 0.28    |         |         |       | 2.91                                   | 0.003  |
| 7                     | Sub_07  | Oleśnica od dopł. spod Łazów do dopł. z Lipowego Pola (I                          | 0.82                     |         |          |         |          |          |          |         | 0.13    |         |         |       | 0.13                                   | 0.000  |
| 8                     | Sub_08  | Dopływ z Lipowego Pola do dopł. spod Świerczka (I)                                | 2.70                     |         |          |         |          |          |          |         | 3.92    |         |         |       | 3.92                                   | 0.005  |
| 9                     | Sub_09  | Dopfyw spod Swierczka<br>Oleśnica od dopł, spod kazów do dopł, z Linowego Pola (J | 8.55                     |         |          |         |          | 0.25     |          |         | 3.85    |         |         |       | 3.85                                   | 0.017  |
| 13                    | Sub 13  | Oleśnica od dopł. spod Łazów do dopł. z Lipowego Pola (i                          | 2.30                     |         |          |         |          | 0.25     |          |         | 0.98    |         |         |       | 0.98                                   | 0.001  |
| 14                    | Sub_14  | Dopływ z Lipowego Pola od dopł. spod Świerczka do ujści                           | 2.66                     |         |          |         |          |          |          |         | 3.95    |         |         |       | 3.95                                   | 0.005  |
| 17                    | Sub_17  | Dopływ spod Leszczyn od dopł. z Zapowiedzi do ujścia                              | 1.16                     |         |          |         |          |          |          |         |         |         |         | 4.86  | 4.86                                   | 0.003  |
| 20                    | Sub_20  | Oleśnica od dopł. z Lipowego Pola do ujścia                                       | 2.56                     |         |          |         |          |          | 0.03     |         |         |         |         |       | 0.03                                   | 0.000  |
| 21                    | Sub_21  | Kamienna od Oleśnicy do Wężyka (I)                                                | 9.99                     |         |          |         |          | 0.03     | 1.16     |         |         |         | 0.04    |       | 1.20                                   | 0.006  |
| 23                    | Sub_23  | Kamienna od Bernatki do Olesnicy (I)<br>Bernatka                                  | 21.27                    |         |          |         |          |          | 0.60     |         |         |         | 2.94    | 1.80  | 3.55                                   | 0.025  |
| 25                    | Sub 25  | Kamienna od dopł. spod Leszczyn do Kuźniczki (p)                                  | 7,63                     |         |          |         |          |          |          |         |         |         |         | 0.60  | 0.60                                   | 0.002  |
| 29                    | Sub_29  | Kuźniczka do dopł. z Piechotnej (I)                                               | 18.00                    |         |          |         |          | 0.33     |          |         |         |         |         |       | 0.33                                   | 0.003  |
| 33                    | Sub_33  | Kamienna od dopł. w Cyganowie do Kamionki (p)                                     | 15.80                    |         |          |         |          |          |          |         |         |         |         | 4.93  | 4.93                                   | 0.039  |
| 34                    | Sub_34  | Kamienna od Wężyka do Żarnówki (p)                                                | 1.94                     |         |          |         |          |          | 0.64     |         |         |         |         |       | 0.64                                   | 0.001  |
| 37                    | Sub_37  | Zarnowka od Kaczki do ujscia                                                      | 8.41                     | 0.01    |          |         |          |          | 0.27     |         | 2.02    |         |         |       | 0.27                                   | 0.001  |
| 40                    | Sub_30  | Wolanka do dont spod Grechowa (I)                                                 | 19.28                    | 0.01    |          | 0.07    |          |          | <u> </u> |         | 2.85    |         |         |       | 2.93                                   | 0.013  |
| 41                    | Sub_41  | Kamienna od Żarnówki do dopł. z Podławek (p)                                      | 4.75                     | 0.01    |          | 0.07    |          |          | 1.11     |         | 2.00    |         |         |       | 1.11                                   | 0.003  |
| 43                    | Sub_43  | Kamienna od dopł. spod Czerwonej Góry do dopł. w Cyga                             | 5.13                     |         |          |         |          |          |          |         |         |         |         | 4.78  | 4.78                                   | 0.012  |
| 44                    | Sub_44  | Kamienna od Ścięgna do ujścia                                                     | 23.26                    | 0.19    |          |         |          |          |          |         |         |         |         |       | 0.19                                   | 0.002  |
| 46                    | Sub_46  | Kamienna od dopł. z Podławek do dopł. z Sinej Wody (I)                            | 13.95                    |         |          | 0.03    |          | 0.01     | 0.42     |         |         |         |         |       | 0.46                                   | 0.003  |
| 49                    | Sub_49  | Doptyw z Podławek                                                                 | 6.90                     |         |          |         |          |          | 0.75     |         |         |         |         |       | 0.75                                   | 0.003  |
| 50                    | Sub_50  | Dophys spod Czerwonej Góry                                                        | 6.38                     | 1.17    |          |         |          |          |          |         |         |         |         | 1.80  | 1.17                                   | 0.016  |
| 64                    | Sub_64  | Ściegno od dopł. spod Dabrowy do ujścia                                           | 13.82                    | 1.67    |          |         |          |          |          |         |         |         |         | 1.00  | 1.67                                   | 0.012  |
| 65                    | Sub_65  | Kamienna od Wolanki do Ściegna (p)                                                | 49.60                    | 0.66    |          |         |          |          |          |         |         |         |         |       | 0.66                                   | 0.017  |
| 70                    | Sub_70  | Lubianka do dopł. spod Lubieni-Podlesia (I)                                       | 15.39                    |         |          |         |          | 0.17     |          |         |         |         |         |       | 0.17                                   | 0.001  |
| 72                    | Sub_72  | Doplyw spod Lubieni-Podlesia                                                      | 5.98                     |         |          | 0.02    |          |          |          |         |         |         |         |       | 0.02                                   | 0.000  |
| 82                    | Sub_82  | Wolanka do dopł. spod Grechowa do ujścia                                          | 54.78                    | 2.03    |          |         |          |          | 0.01     |         |         |         |         |       | 2.04                                   | 0.056  |
| 91                    | Sub_88  | Bazoośradnia zlawnia zb. Brody Ithackie                                           | 26.08                    | 1.62    |          | 0.07    | <u> </u> |          | <u> </u> |         |         |         |         |       | 1.62                                   | 0.021  |
| 92                    | Sub_91  | Sciegno do dopł. spod Dabrowy (I)                                                 | 45.67                    | 2.48    |          | 0.07    |          |          |          |         |         |         |         |       | 2.48                                   | 0.057  |
| 97                    | Sub_97  | Kamienna od dopł. spod Podgórza do Wolanki (I)                                    | 51.96                    | 0.05    |          |         |          |          |          |         |         |         |         |       | 0.05                                   | 0.001  |
| 100                   | Sub_100 | Kamionka od Jaślanej do dopł. z Michniowa (p)                                     | 10.72                    | 0.11    |          |         |          |          |          |         |         |         |         |       | 0.11                                   | 0.001  |
| 104                   | Sub_104 | Kamienna od dopł. z Lubieni do dopł. spod Boru Kunowsk                            | 2.97                     | 0.12    |          |         |          |          |          |         |         |         |         |       | 0.12                                   | 0.000  |
| 105                   | Sub_105 | Doptyw spod Boru Kunowskiego                                                      | 10.55                    |         |          | 0.00    |          | 0.57     |          |         |         |         |         | 4.75  | 5.32                                   | 0.028  |
| 100                   | Sub 100 | Dophys z Kuczowa (p)                                                              | 10.55                    | 0.16    |          | 0.02    |          | 0.33     |          |         |         |         |         |       | 0.02                                   | 0.000  |
| 105                   | Sub 114 | Bezpośrednia zlewnia zb. Brody Hżeckie                                            | 1.45                     | 0.18    |          |         |          | 0.00     |          |         |         |         |         |       | 0.18                                   | 0.000  |
| 115                   | Sub_115 | Doptyw spod Podgórza                                                              | 13.61                    | 0.69    |          |         |          |          |          |         |         |         |         |       | 0.69                                   | 0.005  |
| 116                   | Sub_116 | Bezpośrednia zlewnia zb. Brody Hżeckie                                            | 4.09                     | 0.38    |          |         |          |          |          |         |         |         |         |       | 0.38                                   | 0.001  |
| 117                   | Sub_117 | Jaślana                                                                           | 21.45                    |         |          | 0.04    |          |          |          |         |         |         |         |       | 0.04                                   | 0.000  |
| 122                   | Sub_122 | Kamienna od dopi. spod Boru Kunowskiego do dopi. spod                             | 12.00                    |         |          |         |          |          | 0.48     |         |         |         |         |       | 0.48                                   | 0.003  |
| 125                   | Sub 124 | Świślina od Wegierki do ujścia                                                    | 5.20                     | 0.27    |          |         |          |          | 0.00     |         |         |         |         |       | 0.00                                   | 0.000  |
| 125                   | Sub 125 | Świślina od Psarki do Jaworek (p)                                                 | 12.71                    | 0.02    | 0.01     | 0.03    |          |          |          |         |         |         |         |       | 0.06                                   | 0.000  |
| 128                   | Sub_128 | Świślina do Psarki (p)                                                            | 14.16                    |         | 0.00     | 0.01    |          |          |          |         |         |         |         |       | 0.01                                   | 0.000  |
| 129                   | Sub_129 | Jaworki                                                                           | 13.90                    | 0.23    | 0.00     | 0.02    |          |          |          |         | 0.03    |         |         |       | 0.28                                   | 0.002  |
| 130                   | Sub_130 | Dopływ z Godowa                                                                   | 6.46                     | 0.32    |          |         |          |          |          |         |         |         |         |       | 0.32                                   | 0.001  |
| 131                   | Sub_131 | Swislina od Węgierki do ujścia                                                    | 3.00                     | 0.01    |          | 0.11    |          |          |          | 0.05    |         |         |         |       | 0.16                                   | 0.000  |
| 135                   | Sub_135 | stare korvto w Stokach Starvch                                                    | 113.01                   | 0.01    |          |         |          |          |          | 0.07    |         |         |         |       | 0.01                                   | 0.000  |
| 137                   | Sub_137 | Psarka od Sieradowianki do ujścia                                                 | 6.85                     | 0.01    |          | 0.04    |          |          |          | 0.07    |         |         |         |       | 0.05                                   | 0.000  |
| 138                   | Sub_138 | Świślina od Jaworek do zb. Wióry                                                  | 8.44                     | 0.18    |          | 0.02    |          |          |          |         | 0.01    |         |         |       | 0.21                                   | 0.001  |
| 139                   | Sub_139 | Świślina od zapory zb. Wióry do dopł. z Godowa (I)                                | 1.37                     |         | 0.06     |         |          | 1.41     |          |         |         |         |         |       | 1.47                                   | 0.001  |
| 140                   | Sub_140 | Psarka do dopł. spod Wzdołu Rządowego (I)                                         | 11.89                    | 0.00    |          |         |          |          |          |         |         |         |         |       | 0.00                                   | 0.000  |
| 141                   | Sub_141 | Dopfyw spoa Wzdołu Rządowego                                                      | 5.49                     | 0.12    |          | 0.05    |          |          |          |         |         |         |         |       | 0.12                                   | 0.000  |
| 142                   | Sub 142 | Preznośrednia zlewnia zb. Wióry                                                   | 26.53                    | 1.00    | 0.01     | 0.05    |          |          |          |         | 0.00    |         |         |       | 1.57                                   | 0.004  |
| 145                   | Sub 146 | Doplyw spod Chocimowa                                                             | 3.75                     | 0.66    | 0.01     | 0.50    |          |          |          |         | 0.00    |         |         |       | 0.66                                   | 0.001  |
| 147                   | Sub_147 | Psarka od Gozdkówki do Sieradowianki (I)                                          | 3.75                     | 0.10    |          |         |          |          |          |         |         |         |         |       | 0.10                                   | 0.000  |
| 148                   | Sub_148 | Sieradowianka                                                                     | 8.52                     | 0.10    | 0.01     |         |          |          |          |         |         |         |         |       | 0.11                                   | 0.000  |
| 149                   | Sub 149 | Kamienna od Świśliny do Dunaju (1)                                                | 0.88                     |         |          | 0.03    |          |          |          |         | 1.11    |         |         |       | 1.14                                   | 0.001  |

Tab. 9 Assessment of the effectiveness of the expert variant





### Tab.9 Assessment of the effectiveness of the expert variant - continued

|      |          | Grade for a measure (                                                                        | total by SPUs):          | 30.43  | 18.66   | 2.91  | 0.00    | 5.99  | 6.85    | 0.12  | 24.63   | 7.80    | 2.94    | 23.52 | 0.71          | SPU               |
|------|----------|----------------------------------------------------------------------------------------------|--------------------------|--------|---------|-------|---------|-------|---------|-------|---------|---------|---------|-------|---------------|-------------------|
| No   | 6DU Ld   | £Pil name                                                                                    | Measure Id by            | A02    | WRAL    | F01   | F08     | F14   | ER      | N06   | BPDA    | т1      | T2      | тз    | 6 Dill grader | grades<br>*F_SPU/ |
| 140. | SPOId    | 5P0 Hallie                                                                                   | F SPIL Rm <sup>2</sup> 1 | km/km2 | km2/km2 | km/km | km2/km2 | km/km | km2/km2 | km/km | km2/km2 | km2/km2 | km2/km2 | m3/m3 | SPO grades    | Sum_F_            |
| 150  | Cub 150  | Dunai                                                                                        | 20.82                    |        |         | 0.04  |         | 0.07  |         |       |         |         |         |       | 0.44          | SPU -             |
| 150  | Sub_150  | Olszówka                                                                                     | 9.85                     | 0.23   |         | 0.04  |         | 0.07  |         |       |         |         |         |       | 0.23          | 0.001             |
| 153  | Sub 153  | Modła od dopł, spod Swarszowic do ujścia                                                     | 2.07                     | 0.48   |         |       |         |       |         |       |         |         |         |       | 0.48          | 0.001             |
| 154  | Sub_154  | Kamienna od dopł. spod Bukowia do Modły (p)                                                  | 6.00                     | 0.02   |         | 0.05  |         |       |         |       |         |         |         |       | 0.06          | 0.000             |
| 155  | Sub_155  | Kamienna od Dunaju do dopł. spod Bukowia (p)                                                 | 0.88                     | 0.58   |         | 0.07  |         |       |         |       |         |         |         |       | 0.65          | 0.000             |
| 156  | Sub_156  | Kamienna od Świśliny do Dunaju (l)                                                           | 2.13                     |        | 0.03    | 0.22  |         |       |         |       |         |         |         |       | 0.25          | 0.000             |
| 157  | Sub_157  | Kamienna od dopł. spod Bukowia do Modły (p)                                                  | 7.52                     | 0.23   | 0.01    | 0.09  |         |       |         |       |         |         |         |       | 0.33          | 0.001             |
| 158  | Sub_158  | Dopfyw spod Bukowia do dopf. spod Chocimowa (I)                                              | 5.92                     | 0.61   | 0.00    | 0.24  |         |       |         |       |         |         |         |       | 0.85          | 0.003             |
| 159  | Sub_159  | Psarka od Olszowki do Gozdkowki (p)                                                          | 25.61                    | 0.15   | 0.00    |       |         |       |         |       | 0.02    |         |         |       | 0.15          | 0.002             |
| 163  | Sub 163  | Gozdkówka do dopł, spod Kowalkowa (p)                                                        | 5.99                     | 0.20   |         |       |         |       |         |       | 0.02    |         |         |       | 0.20          | 0.001             |
| 164  | Sub 164  | Szewnianka od Pokrzywianki do ujścia                                                         | 26.06                    | 0.01   | 0.01    |       |         |       |         |       |         |         |         |       | 0.02          | 0.000             |
| 167  | Sub_167  | Modła od dopł. spod Swarszowic do ujścia                                                     | 4.92                     | 0.78   |         |       |         |       |         |       |         |         |         |       | 0.78          | 0.002             |
| 170  | Sub_170  | Kamienna od Przepaści do dopł. w Borowni (p)                                                 | 8.00                     |        | 0.01    |       |         |       |         |       |         |         |         |       | 0.01          | 0.000             |
| 171  | Sub_171  | Modła do dopł. spod Swarszowic (p)                                                           | 11.98                    | 0.38   | 0.01    |       |         |       |         |       |         | 3.86    |         |       | 4.24          | 0.026             |
| 172  | Sub_172  | Dopływ spod Rzuchowa do dopł. spod Moczydła (p)                                              | 11.21                    | 0.03   |         | 0.05  |         |       |         |       |         |         |         |       | 0.08          | 0.000             |
| 174  | Sub_174  | Kamienna od dopł. z Ostrowca-Rzeczek do dopł. spod Rzu                                       | 15.88                    | 0.07   |         |       |         |       | 1.29    |       |         |         |         |       | 1.29          | 0.010             |
| 1/5  | Sub_175  | Doptyw spod Moczydia<br>Kamienna od doat a Osternusa Daesaek do doat sood Dau                | 6.43                     | 0.07   | 0.02    | 0.03  |         |       | 0.00    |       |         |         |         |       | 0.12          | 0.000             |
| 175  | Sub 177  | Namienna od dopi. z Ostrowca-kzeczek do dopi. spod kzu<br>Dopływ z Boleczypa Dolnego (p)     | 6.64                     | 0.23   |         |       |         |       | 0.00    |       |         |         |         |       | 0.00          | 0.000             |
| 178  | Sub 178  | Doplyw spod Swarszowic                                                                       | 4.91                     | 0.22   | 0.01    |       |         |       |         |       |         | 3.94    |         |       | 4.17          | 0.010             |
| 179  | Sub_179  | Doplyw spod Chybic                                                                           | 7.66                     | 0.23   | 0.00    |       |         |       |         |       |         | 0.01    |         |       | 0.24          | 0.001             |
| 180  | Sub_180  | Pokrzywianka od dopł. spod Chybic do ujścia                                                  | 1.18                     | 0.16   | 0.09    |       |         |       |         |       |         |         |         |       | 0.26          | 0.000             |
| 182  | Sub_182  | Pokrzywianka od Dobruchny do dopł. spod Chybic (I)                                           | 1.71                     |        | 0.13    |       |         |       |         |       |         |         |         |       | 0.13          | 0.000             |
| 184  | Sub_184  | Dopływ z Bodzechowa                                                                          | 19.48                    | 0.28   | 0.89    |       |         |       |         |       |         |         |         |       | 1.16          | 0.011             |
| 185  | Sub_185  | Pokrzywianka od Słupianki do Dobruchny (p)                                                   | 16.80                    | 0.20   | 0.01    |       |         | 0.02  |         |       | 0.01    |         |         |       | 0.24          | 0.002             |
| 186  | Sub_186  | Pokrzywianka do Czarnej Wody (I)                                                             | 18.65                    | 0.09   |         |       |         |       |         |       | 0.06    |         |         |       | 0.15          | 0.001             |
| 187  | SUD_187  | Ctarna Woda<br>Debruches ed dest, seed Osiesis de viásis                                     | 36.79                    | 0.12   |         |       |         |       |         |       | 0.00    |         |         |       | 0.12          | 0.002             |
| 189  | Sub 189  | Przepaść od Krzczonowianki do dopł. z Bodzechowa (I)                                         | 2.47                     | 0.20   | 0.04    |       |         |       |         |       |         |         |         |       | 0.20          | 0.000             |
| 190  | Sub 190  | Doptyw spod Czajecic                                                                         | 6.15                     | 0.25   | 0.04    |       |         |       |         |       |         |         |         |       | 0.25          | 0.001             |
| 191  | Sub_191  | Pokrzywianka od Czarnej Wody do dopł. z Bielowa (p)                                          | 3.03                     | 0.08   |         |       |         | 0.05  |         |       |         |         |         |       | 0.13          | 0.000             |
| 192  | Sub_192  | Dopływ z Bielowa                                                                             | 5.27                     |        |         |       |         |       |         |       | 0.02    |         |         |       | 0.02          | 0.000             |
| 193  | Sub_193  | Krzczonowianka od Lipowej do ujścia                                                          | 16.45                    | 0.59   | 2.33    | 0.01  |         |       |         |       |         |         |         |       | 2.93          | 0.024             |
| 194  | Sub_194  | Przepaść od dopł. spod Bidzin do Krzczonowianki (I)                                          | 5.53                     | 0.64   | 0.69    |       |         |       |         |       |         |         |         |       | 1.33          | 0.004             |
| 195  | Sub_195  | Dobruchna od dopł. ze Skoszyna do dopł. spod Czajęcic (p                                     | 3.99                     | 0.12   |         |       |         |       |         |       |         |         |         |       | 0.12          | 0.000             |
| 196  | Sub_196  | Pokrzywianka do dopł. spod Garbacza (p)<br>Pokrzywianka od dopł z Bielowa do Stupianki (n)   | 10.30                    | 0.66   |         | 0.04  |         | 0.04  |         |       | 0.08    |         |         |       | 0.69          | 0.004             |
| 198  | Sub 198  | Stunianka od dopł. z bielowa do słupianki (p)                                                | 8.47                     | 0.14   |         |       |         | 0.04  |         |       | 0.00    |         |         |       | 0.25          | 0.001             |
| 199  | Sub 199  | Dopływ ze Skoszyna                                                                           | 10.91                    | 0.14   |         |       |         | 0.02  |         |       | 0.01    |         |         |       | 0.14          | 0.001             |
| 200  | Sub_200  | Dobruchna od dopł. z Wronowa do dopł. ze Skoszyna (I)                                        | 3.97                     | 0.38   |         |       |         |       |         |       |         |         |         |       | 0.38          | 0.001             |
| 201  | Sub_201  | Dopływ spod Garbacza                                                                         | 3.89                     |        |         | 0.11  |         |       |         |       |         |         |         |       | 0.11          | 0.000             |
| 202  | Sub_202  | Dopływ spod Bidzin                                                                           | 11.63                    | 0.03   | 0.02    | 0.06  |         |       |         |       |         |         |         |       | 0.10          | 0.001             |
| 203  | Sub_203  | Pokrzywianka od dopł. spod Garbacza do Garbutki (p)                                          | 6.53                     | 0.31   | 0.01    |       |         |       |         |       |         |         |         |       | 0.32          | 0.001             |
| 205  | Sub_205  | Krzczonowianka do dopł. z Małoszyc (p)                                                       | 15.99                    | 0.88   | 1.15    | 0.06  |         |       |         |       |         |         |         |       | 2.09          | 0.017             |
| 207  | Sub_207  | Przepaso od dopł. spod Grocnocić do dopł. spod Bidzin (p<br>Dobruchna do dopł. s Wronowa (l) | 13.45                    | 0.14   | 2.51    | 0.02  |         |       |         |       |         |         |         |       | 3,68          | 0.025             |
| 200  | Sub 209  | Stupianka od Łagowianki do dopł. z Łaz (I)                                                   | 6.47                     | 0.26   |         | 0.02  |         |       |         |       | 0.06    |         |         |       | 0.13          | 0.001             |
| 210  | Sub 210  | Doplyw z Łaz                                                                                 | 4.53                     | 0.20   |         |       |         |       |         |       | 0.03    |         |         |       | 0.03          | 0.000             |
| 211  | Sub_211  | Garbutka do dopł. z Wierzbontowic (I)                                                        | 16.55                    | 0.12   |         | 0.11  |         |       |         |       |         |         |         |       | 0.22          | 0.002             |
| 212  | Sub_212  | Dopływ spod Sadowia Poduchownego                                                             | 8.38                     |        |         |       |         |       |         |       |         |         |         |       | 0.00          | 0.000             |
| 213  | Sub_213  | Dopływ z Małoszyc                                                                            | 4.40                     | 0.75   | 2.50    |       |         |       |         |       |         |         |         |       | 3.25          | 0.007             |
| 214  | Sub_214  | Lipowa od dopł. z Rosoch do ujścia                                                           | 5.88                     | 0.29   | 0.90    | 0.00  |         |       |         |       |         |         |         |       | 1.19          | 0.004             |
| 215  | Sub_215  | Krzczonowianka od dopł. z Małoszyc do Lipowej (p)                                            | 1.97                     | 0.11   | 0.89    |       |         |       |         |       | 0.74    |         |         |       | 0.99          | 0.001             |
| 218  | Sub_218  | Lagowianka od dopł. w Jeleniowie do ujscia<br>karowianka do dopł. w Jeleniowie (z)           | 0.11                     |        |         |       |         | 0.05  |         |       | 0.74    |         |         |       | 0.74          | 0.000             |
| 219  | Sub_229  | stupianka do Łagowianki (p)                                                                  | 7.33                     |        |         |       |         | 0.05  |         |       | 0.01    |         |         |       | 0.06          | 0.000             |
| 220  | Sub_221  | Lipowa do dopt, z Rosoch (p)                                                                 | 17.46                    | 1.21   | 1.64    | 0.04  |         |       |         |       | 0.00    |         |         |       | 2.89          | 0.025             |
| 223  | Sub, 223 | Dopływ z Rosoch                                                                              | 2.92                     |        | 0.59    | 0.36  |         |       |         |       |         |         |         |       | 0.95          | 0.001             |
| 224  | Sub_224  | Przepaść od dopł. z Kaliszan do dopł. spod Grochocic (p)                                     | 0.81                     | 0.16   | 1.88    |       |         |       |         |       |         |         |         |       | 2.04          | 0.001             |
| 225  | Sub_225  | Dopływ spod Grochocic                                                                        | 15.48                    | 0.57   | 1.06    | 0.18  |         |       |         |       |         |         |         |       | 1.82          | 0.014             |
| 226  | Sub_226  | Dopływ z Kaliszan                                                                            | 7.23                     | 0.07   | 0.05    |       |         |       |         |       |         |         |         |       | 0.12          | 0.000             |
| 227  | Sub_227  | Przepaść do dopł. z Kaliszan (I)                                                             | 8.18                     | 0.22   | 1.10    |       |         |       |         |       |         |         |         |       | 1.31          | 0.005             |







Fig. 1 Assessment map of the expert variant at the SPU level



Fig. 2 Map of measures selected in the expert variant





#### 4.2 For the variant of local preferences

The results of the local variant assessment are also presented in the form of a table and map (Tab. 10 and Fig. 4). In this variant, the small reservoirs on rivers (T3 = 52.73) have the greatest impact on the final score while the impact of other measures is negligible. Measure T3 and a large catchment area had an impact on the very high rating of SPU 136. As before, SPU assessment without taking into account its area gives different results, and in this case the SPU 13 dominates with a score of 5.9. This variant included a small number of measures with high efficiency which caused the SPU assessment results to be cumulated only in a couple of areas and divergences between them are very significant. The overall rating for this variant is 0.49.

| Number of         | 7       |                                                           |                          | Grading of the Program of Small Water Retention Measures |      |         |         |         |         |       |                 |                 |
|-------------------|---------|-----------------------------------------------------------|--------------------------|----------------------------------------------------------|------|---------|---------|---------|---------|-------|-----------------|-----------------|
| Number of<br>SPUs | 227     |                                                           | Measure No.              | 1                                                        | 2    | з       | 4       | 5       | 6       | 7     | Catchment grade | SPU             |
|                   |         | Grade for a measure                                       | total by SPUs):          | 0.90                                                     | 0.00 | 0.00    | 4.07    | 7.80    | 2.94    | 52.78 | 0.49            | grades<br>*F SP |
| No.               | SPU Id  | SPU name                                                  | Measure Id by<br>User    | A02                                                      | F06  | F08     | BPDA    | т1      | T2      | тз    | SPU grades      | U/Sum<br>F SP   |
|                   |         |                                                           | F_SPU [km <sup>2</sup> ] | km/km2                                                   |      | km2/km2 | km2/km2 | km2/km2 | km2/km2 | m3/m3 |                 | Ū               |
| 12                | Sub_12  | Oleśnica od dopł. spod Łazów do dopł. z Lipowego Pola (I) | 20.55                    |                                                          |      |         | 2.61    |         |         |       | 2.61            | 0.029           |
| 13                | Sub_13  | Oleśnica od dopł. spod Łazów do dopł. z Lipowego Pola (I) | 2.30                     |                                                          |      |         | 0.94    |         |         | 4.98  | 5.91            | 0.007           |
| 17                | Sub_17  | Dopływ spod Leszczyn od dopł. z Zapowiedzi do ujścia      | 1.16                     |                                                          |      |         |         |         |         | 4.86  | 4.86            | 0.003           |
| 23                | Sub_23  | Kamienna od Bernatki do Oleśnicy (I)                      | 13.76                    |                                                          |      |         |         |         | 2.94    |       | 2.94            | 0.022           |
| 25                | Sub_25  | Kamienna od dopł. spod Leszczyn do Kuźniczki (p)          | 7.63                     |                                                          |      |         |         |         |         | 0.60  | 0.60            | 0.002           |
| 33                | Sub_33  | Kamienna od dopł. w Cyganowie do Kamionki (p)             | 15.80                    |                                                          |      |         |         |         |         | 4.93  | 4.93            | 0.042           |
| 37                | Sub_37  | Żarnówka od Kaczki do ujścia                              | 8.41                     |                                                          |      |         |         |         |         | 4.77  | 4.77            | 0.021           |
| 43                | Sub_43  | Kamienna od dopł. spod Czerwonej Góry do dopł. w Cygano   | 5.13                     |                                                          |      |         |         |         |         | 4.78  | 4.78            | 0.013           |
| 50                | Sub_50  | Kamienna od dopł. z Podławek do dopł. z Sinej Wody (I)    | 5.43                     |                                                          |      |         |         |         |         | 4.81  | 4.81            | 0.014           |
| 57                | Sub_57  | Kamienna od dopł. z kopalni żelaza do Młynówki (I)        | 2.13                     |                                                          |      |         |         |         |         | 4.94  | 4.94            | 0.006           |
| 65                | Sub_65  | Kamienna od Wolanki do Ścięgna (p)                        | 49.60                    |                                                          | 0.00 |         |         |         |         |       | 0.00            | 0.000           |
| 67                | Sub_67  | Dopływ z Kleszczyn                                        | 7.07                     |                                                          |      | 0.00    |         |         |         |       | 0.00            | 0.000           |
| 91                | Sub_91  | Bezpośrednia zlewnia zb. Brody Hżeckie                    | 5.27                     |                                                          |      |         |         |         |         | 4.78  | 4.78            | 0.013           |
| 97                | Sub_97  | Kamienna od dopł. spod Podgórza do Wolanki (I)            | 51.96                    |                                                          |      |         | 0.42    |         |         |       | 0.42            | 0.012           |
| 105               | Sub_105 | Dopływ spod Boru Kunowskiego                              | 10.55                    |                                                          | 0.00 |         | 0.09    |         |         |       | 0.09            | 0.001           |
| 109               | Sub_109 | Dopływ z Kuczowa (p)                                      | 15.97                    |                                                          |      |         | 0.00    |         |         |       | 0.00            | 0.000           |
| 115               | Sub_115 | Dopływ spod Podgórza                                      | 13.61                    |                                                          |      |         |         |         |         | 4.99  | 4.99            | 0.036           |
| 135               | Sub_135 | Kamienna od dopł. w Borowni do starego koryta w Stokach   | 40.80                    |                                                          | 0.00 |         |         |         |         |       | 0.00            | 0.000           |
| 136               | Sub_136 | Stare koryto w Stokach Starych                            | 113.01                   |                                                          | 0.00 |         |         |         |         | 3.58  | 3.58            | 0.217           |
| 168               | Sub_168 | Dopływ w Borowni                                          | 14.03                    |                                                          | 0.00 |         |         |         |         |       | 0.00            | 0.000           |
| 170               | Sub_170 | Kamienna od Przepaści do dopł. w Borowni (p)              | 8.00                     |                                                          | 0.00 |         |         |         |         |       | 0.00            | 0.000           |
| 171               | Sub_171 | Modła do dopł. spod Swarszowic (p)                        | 11.98                    |                                                          |      |         |         | 3.86    |         |       | 3.86            | 0.025           |
| 178               | Sub_178 | Dopływ spod Swarszowic                                    | 4.91                     |                                                          |      |         |         | 3.94    |         |       | 3.94            | 0.010           |
| 181               | Sub_181 | Kamienna od Przepaści do dopł. w Borowni (p)              | 3.10                     |                                                          | 0.00 |         |         |         |         |       | 0.00            | 0.000           |
| 183               | Sub_183 | Kamienna od dopł. spod Rzuchowa do Przepaści (p)          | 8.86                     |                                                          | 0.00 |         |         |         |         |       | 0.00            | 0.000           |
| 184               | Sub_184 | Dopływ z Bodzechowa                                       | 19.48                    |                                                          | 0.00 |         |         |         |         | 4.75  | 4.75            | 0.050           |
| 185               | Sub_185 | Pokrzywianka od Słupianki do Dobruchny (p)                | 16.80                    | 0.11                                                     |      |         |         |         |         |       | 0.11            | 0.001           |
| 186               | Sub_186 | Pokrzywianka do Czarnej Wody (I)                          | 18.65                    | 0.09                                                     |      |         |         |         |         |       | 0.09            | 0.001           |
| 187               | Sub_187 | Czarna Woda                                               | 36.79                    | 0.03                                                     |      |         |         |         |         |       | 0.03            | 0.001           |
| 195               | Sub_195 | Dobruchna od dopł. ze Skoszyna do dopł. spod Czajęcic (p) | 3.99                     | 0.09                                                     |      |         |         |         |         |       | 0.09            | 0.000           |
| 197               | Sub_197 | Pokrzywianka od dopł. z Bielowa do Słupianki (p)          | 11.20                    | 0.14                                                     |      |         |         |         |         |       | 0.14            | 0.001           |
| 198               | Sub_198 | Słupianka od dopł. z Łaz do ujścia                        | 8.47                     | 0.17                                                     |      |         |         |         |         |       | 0.17            | 0.001           |
| 209               | Sub_209 | Słupianka od Łagowianki do dopł. z Łaz (I)                | 6.47                     | 0.26                                                     |      |         |         |         |         |       | 0.26            | 0.001           |

Tab. 10 Assessment of the effectiveness of the local variant







Fig. 3 Assessment map of the local variant at the SPU level



Fig. 4 Map of measures selected in the local preferences variant





## 4.3 Reducing the number of SPUs variant





Fig. 5 Map of SPU - a) basin for 227 SPU, b) after reduction to SPU 113 - expert variant.





Tab. 11 Assessment of the effectiveness of the local variant after reducing the number of SPUs

| North and of            |        |          |                          |        |          |         | LITU     | LITOI   | LITU     | LITU   |                                        |
|-------------------------|--------|----------|--------------------------|--------|----------|---------|----------|---------|----------|--------|----------------------------------------|
| number or<br>measures   | 7      |          |                          | Gradin | g of the | Program | n of Sma | ll Wate | r Retent | ion Me | asures 🗊                               |
| Number of<br>SPUs       | 113    |          | Measure No.              | 1      | 2        | 3       | 4        | 5       | 6        | 7      | Catchment grade<br>for current variant |
| Grade for a measure (to |        |          | (total by SPUs):         | 0.81   | 0.00     | 0.00    | 3.13     | 3.86    | 0.00     | 20.42  | 0.47                                   |
| No.                     | SPU Id | SPU name | Measure Id by<br>User    | A02    | F06      | F08     | BPDA     | T1      | T2       | тз     | SPU grades                             |
|                         |        |          | F_SPU [km <sup>2</sup> ] | km/km2 | -        | km2/km2 | km2/km2  | km2/km2 | km2/km2  | m3/m3  |                                        |
| 5                       | 12     | Sub12    | 20.55                    |        |          |         | 2.61     |         |          |        | 2.61                                   |
| 11                      | 25     | Sub25    | 7.63                     |        |          |         |          |         |          | 0.04   | 0.04                                   |
| 14                      | 33     | Sub33    | 15.80                    |        |          |         |          |         |          | 3.46   | 3.46                                   |
| 17                      | 37     | Sub37    | 8.41                     |        |          |         |          |         |          | 4.79   | 4.79                                   |
| 29                      | 60     | Sub60    | 6.38                     |        |          |         |          |         |          | 2.07   | 2.07                                   |
| 46                      | 97     | Sub97    | 51.96                    |        |          |         | 0.42     |         |          | 1.30   | 1.72                                   |
| 49                      | 105    | Sub105   | 10.55                    |        | 0.00     |         | 0.09     |         |          |        | 0.09                                   |
| 54                      | 115    | Sub115   | 13.61                    |        |          |         |          |         |          | 0.43   | 0.43                                   |
| 64                      | 136    | Sub136   | 113.01                   |        | 0.00     |         |          |         |          | 3.56   | 3.56                                   |
| 81                      | 171    | Sub171   | 11.98                    |        |          |         |          | 3.86    |          |        | 3.86                                   |
| 88                      | 184    | Sub184   | 19.48                    |        | 0.00     |         |          |         |          | 4.76   | 4.76                                   |
| 89                      | 185    | Sub185   | 16.80                    | 0.11   |          |         |          |         |          |        | 0.11                                   |
| 90                      | 186    | Sub186   | 18.65                    | 0.09   |          |         |          |         |          |        | 0.09                                   |
| 91                      | 187    | Sub187   | 36.79                    | 0.03   |          |         |          |         |          |        | 0.03                                   |
| . 95                    | 197    | Sub197   | 11.20                    | 0.14   |          |         |          |         |          |        | 0.14                                   |
| 96                      | 198    | Sub198   | 8.47                     | 0.17   |          |         |          |         |          |        | 0.17                                   |
| 103                     | 209    | Sub209   | 6.47                     | 0.26   |          |         |          |         |          |        | 0.26                                   |
| )                       |        |          |                          |        |          |         |          |         |          |        |                                        |
| -                       |        |          |                          |        |          |         |          |         |          |        |                                        |
| 2                       |        |          |                          |        |          |         |          |         |          |        |                                        |
| 3                       |        |          |                          |        |          |         |          |         |          |        |                                        |

Tab. 12 Assessment of the effectiveness of the expert variant after reducing the number of SPUs

| Number of | 11     |                       |                 | Grading of the Program of Small Water Retention Measures |         |       |         |       |         |       |         |                                         |         |       |                     |
|-----------|--------|-----------------------|-----------------|----------------------------------------------------------|---------|-------|---------|-------|---------|-------|---------|-----------------------------------------|---------|-------|---------------------|
| Number of | 113    |                       | Measure No      | 1                                                        | 2       | 3     | 4       | 5     | 6       | 7     | 8       | q                                       | 10      | 11    | Catchment grade for |
| SPUs      | 115    |                       | Measure No.     | -                                                        |         | J     | 4       |       |         |       | -       | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 10      | 11    | current variant     |
|           |        | Grade for a measure ( | total by SPUs): | 22.32                                                    | 10.85   | 1.70  | 0.00    | 1.91  | 4.99    | 0.07  | 13.45   | 3.86                                    | 0.00    | 8.66  | 0.69                |
|           |        |                       | Measure ld by   | 483                                                      |         | E04   | E09     | E14   | ED      | MOC   | PRDA    | 74                                      | m       | T2    |                     |
| Ne.       | SPU Id | SPU name              | User            | HUZ                                                      | WINHL   | 101   | 100     | 114   | LN      | 1400  | DFDH    | 11                                      | 12      | 13    | SPU grades          |
|           |        |                       | F_SPU [km²]     | km/km2                                                   | km2/km2 | km/km | km2/km2 | km/km | km2/km2 | km/km | km2/km2 | km2/km2                                 | km2/km2 | m3/m3 |                     |
| 2         | 9      | Sub9                  | 8.55            |                                                          |         |       |         |       |         |       | 3.85    |                                         |         |       | 3.85                |
| 5         | 12     | Sub12                 | 20.55           |                                                          |         |       |         | 0.25  |         |       | 2.65    |                                         |         |       | 2.90                |
| 7         | 21     | Sub21                 | 9.99            |                                                          |         |       |         | 0.03  | 1.16    |       |         |                                         |         |       | 1.20                |
| 9         | 23     | Sub23                 | 13.76           |                                                          |         |       |         |       | 0.60    |       |         |                                         |         |       | 0.60                |
| 10        | 24     | Sub24                 | 21.27           |                                                          |         |       |         |       |         |       |         |                                         |         | 3.12  | 3.12                |
| 11        | 25     | Sub25                 | 7.63            |                                                          |         |       |         |       |         |       |         |                                         |         | 0.04  | 0.04                |
| 13        | 29     | Sub29                 | 18.00           |                                                          |         |       |         | 0.33  |         |       |         |                                         |         |       | 0.33                |
| 14        | 33     | Sub33                 | 15.80           |                                                          |         |       |         |       |         |       |         |                                         |         | 3.46  | 3.46                |
| 17        | 37     | Sub37                 | 8.41            |                                                          |         |       |         |       | 0.27    |       |         |                                         |         |       | 0.27                |
| 18        | 38     | Sub38                 | 6.64            | 0.01                                                     |         |       |         |       |         |       | 3.82    |                                         |         |       | 3.83                |
| 19        | 40     | Sub40                 | 19.28           | 0.01                                                     |         | 0.07  |         |       |         |       | 2.85    |                                         |         |       | 2.93                |
| 20        | 44     | Sub44                 | 23.26           | 0.19                                                     |         |       |         |       |         |       |         |                                         |         |       | 0.19                |
| 21        | 46     | Sub46                 | 13.95           |                                                          |         | 0.03  |         | 0.01  | 0.42    |       |         |                                         |         |       | 0.46                |
| 24        | 49     | Sub49                 | 6.90            |                                                          |         |       |         |       | 0.75    |       |         |                                         |         |       | 0.75                |
| 27        | 56     | Sub56                 | 30.53           | 1.17                                                     |         |       |         |       |         |       |         |                                         |         |       | 1.17                |
| 29        | 60     | Sub60                 | 6.38            |                                                          |         |       |         |       |         |       |         |                                         |         | 1.98  | 1.98                |
| 30        | 64     | Sub64                 | 13.82           | 1.67                                                     |         |       |         |       |         |       |         |                                         |         |       | 1.67                |
| 31        | 65     | Sub65                 | 49.60           | 0.66                                                     |         |       |         |       |         |       |         |                                         |         |       | 0.66                |
| 34        | 70     | Sub70                 | 15.39           |                                                          |         |       |         | 0.17  |         |       |         |                                         |         |       | 0.17                |
| 35        | 72     | Sub72                 | 5.98            |                                                          |         | 0.02  |         |       |         |       |         |                                         |         |       | 0.02                |
| 40        | 82     | Sub82                 | 54.78           | 2.03                                                     |         |       |         |       | 0.01    |       |         |                                         |         |       | 2.04                |
| 42        | 88     | Sub88                 | 26.08           | 1.62                                                     |         |       |         |       |         |       |         |                                         |         |       | 1.62                |
| 43        | 92     | Sub92                 | 45.67           | 2.48                                                     |         |       |         |       |         |       |         |                                         |         |       | 2.48                |
| 46        | 97     | Sub97                 | 51.96           | 0.05                                                     |         |       |         |       |         |       |         |                                         |         |       | 0.05                |
| 47        | 100    | Sub100                | 10.72           | 0.11                                                     |         |       |         |       |         |       |         |                                         |         |       | 0.11                |
| 49        | 105    | Sub105                | 10.55           |                                                          |         |       |         | 0.57  |         |       |         |                                         |         | 0.07  | 0.64                |
| 50        | 108    | Sub108                | 10.55           |                                                          |         | 0.02  |         |       |         |       |         |                                         |         |       | 0.02                |
| 51        | 109    | Sub109                | 15.97           | 0.16                                                     |         |       |         | 0.33  |         |       |         |                                         |         |       | 0.49                |
| 54        | 115    | Sub115                | 13.61           | 0.69                                                     |         |       |         |       |         |       |         |                                         |         |       | 0.69                |
| 55        | 117    | Sub117                | 21.45           |                                                          |         | 0.04  |         |       |         |       |         |                                         |         |       | 0.04                |
| 57        | 122    | Sub122                | 12.00           |                                                          |         |       |         |       | 0.48    |       |         |                                         |         |       | 0.48                |
| 59        | 125    | Sub125                | 12.71           | 0.02                                                     | 0.01    | 0.03  |         |       |         |       |         |                                         |         |       | 0.06                |
| 60        | 128    | Sub128                | 14.16           |                                                          | 0.00    | 0.01  |         |       |         |       |         |                                         |         |       | 0.01                |
| 61        | 129    | Sub129                | 13.90           | 0.23                                                     | 0.00    | 0.02  |         |       |         |       | 0.03    |                                         |         |       | 0.28                |
| 62        | 130    | SUD13U                | 6.46            | 0.32                                                     |         |       |         |       |         |       |         |                                         |         |       | 0.32                |
| 63        | 135    | SUD135                | 40.80           | 0.01                                                     |         |       |         |       |         | 0.07  |         |                                         |         |       | 0.01                |
| 64        | 136    | 5UD135                | 113.01          | 0.01                                                     |         | 0.04  |         |       |         | 0.07  |         |                                         |         |       | 0.07                |
| 65        | 13/    | SUD137                | 6.85            | 0.01                                                     |         | 0.04  |         |       |         |       | 0.01    |                                         |         |       | 0.05                |
| 60        | 138    | SUD130                | 8.44            | 0.18                                                     |         | 0.02  |         |       |         |       | 0.01    |                                         |         |       | 0.21                |
| 60        | 142    | 500142<br>Sub14E      | 26.53           | 0.23                                                     | 0.01    | 0.05  |         |       |         |       | 0.00    |                                         |         |       | 0.27                |
| 70        | 145    | 300143<br>Sub149      | 24.22           | 1.00                                                     | 0.01    | 0.56  |         |       |         |       | 0.00    |                                         |         |       | L5/<br>0.44         |
| 70        | 140    | 200140                | 0.52            | 0.10                                                     | 0.01    |       |         |       |         |       |         |                                         |         |       | 0.11                |



**FramWat** 



|     | 450 | la cama |       |      |      |      |      |      |      |      |      |      |
|-----|-----|---------|-------|------|------|------|------|------|------|------|------|------|
| /1  | 150 | Sub150  | 20.83 |      |      | 0.04 | 0.07 |      |      |      | <br> | 0.11 |
| 72  | 152 | Sub152  | 9.85  | 0.23 |      |      |      |      |      |      | <br> | 0.23 |
| 73  | 154 | Sub154  | 6.00  | 0.02 |      | 0.05 |      |      |      |      |      | 0.06 |
| 74  | 157 | Sub157  | 7.52  | 0.23 | 0.01 | 0.09 |      |      |      |      |      | 0.33 |
| 75  | 159 | Sub159  | 25.61 | 0.15 | 0.00 |      |      |      |      |      |      | 0.15 |
| 76  | 163 | Sub163  | 5.99  | 0.20 |      |      |      |      |      |      |      | 0.20 |
| 77  | 164 | Sub164  | 26.06 | 0.01 | 0.01 |      |      |      |      |      |      | 0.02 |
| 80  | 170 | Sub170  | 8.00  |      | 0.01 |      |      |      |      |      |      | 0.01 |
| 81  | 171 | Sub171  | 11.98 | 0.38 | 0.01 |      |      |      |      | 3.86 |      | 4.24 |
| 82  | 172 | Sub172  | 11.21 | 0.03 |      | 0.05 |      |      |      |      |      | 0.08 |
| 83  | 174 | Sub174  | 15.88 |      |      |      |      | 1.29 |      |      |      | 1.29 |
| 84  | 175 | Sub175  | 6.43  | 0.07 | 0.02 | 0.03 |      |      |      |      |      | 0.12 |
| 85  | 177 | Sub177  | 6.64  | 0.23 |      |      |      |      |      |      |      | 0.23 |
| 86  | 179 | Sub179  | 7.66  | 0.23 | 0.00 |      |      |      |      |      |      | 0.24 |
| 88  | 184 | Sub184  | 19.48 | 0.28 | 0.89 |      |      |      |      |      |      | 1.16 |
| 89  | 185 | Sub185  | 16.80 | 0.20 | 0.01 |      | 0.02 |      | 0.01 |      |      | 0.24 |
| 90  | 186 | Sub186  | 18.65 | 0.09 |      |      |      |      | 0.06 |      |      | 0.15 |
| 91  | 187 | Sub187  | 36.79 | 0.12 |      |      |      |      | 0.00 |      |      | 0.12 |
| 92  | 190 | Sub190  | 6.15  | 0.25 |      |      |      |      |      |      |      | 0.25 |
| 93  | 193 | Sub193  | 16.45 | 0.59 | 2.33 | 0.01 |      |      |      |      |      | 2.93 |
| 94  | 196 | Sub196  | 10.30 | 0.66 |      | 0.04 |      |      |      |      |      | 0.69 |
| 95  | 197 | Sub197  | 11.20 | 0.14 |      |      | 0.04 |      | 0.08 |      |      | 0.25 |
| 96  | 198 | Sub198  | 8.47  | 0.17 |      |      | 0.02 |      | 0.01 |      |      | 0.20 |
| 97  | 199 | Sub199  | 10.91 | 0.14 |      |      |      |      |      |      |      | 0.14 |
| 98  | 202 | Sub202  | 11.63 | 0.03 | 0.02 | 0.06 |      |      |      |      |      | 0.10 |
| 99  | 203 | Sub203  | 6.53  | 0.31 | 0.01 |      |      |      |      |      |      | 0.32 |
| 100 | 205 | Sub205  | 15.99 | 0.88 | 1 15 | 0.06 |      |      |      |      |      | 2.09 |
| 101 | 207 | Sub207  | 13.45 | 117  | 2.51 | 0.00 |      |      |      |      |      | 3.68 |
| 102 | 208 | Sub208  | 9.55  | 0.14 |      | 0.02 |      |      |      |      |      | 0.15 |
| 103 | 209 | Sub209  | 6.47  | 0.26 |      |      |      |      | 0.06 |      |      | 0.32 |
| 104 | 205 | Sub203  | 16.55 | 0.10 |      | 0.11 |      |      | 0.00 |      |      | 0.32 |
| 107 | 219 | sub219  | 14.57 | 0.11 |      | 0.11 | 0.05 |      | 0.01 |      |      | 0.05 |
| 109 | 212 | Sub221  | 17.46 | 1.21 | 1.64 | 0.04 | 0.00 |      | 0.01 |      |      | 2.89 |
| 105 | 221 | Sub221  | 15.40 | 0.57 | 1.04 | 0.04 |      |      |      |      |      | 1.83 |
| 112 | 223 | Sub025  | 7.09  | 0.07 | 0.05 | 0.10 |      |      |      |      |      | 0.12 |
| 112 | 220 | SUD220  | 7.23  | 0.07 | 1.10 |      |      |      |      |      |      | 4.24 |
|     | 221 | 300227  | 0.10  | 0.22 | 1.10 |      |      |      |      |      |      | T21  |
|     |     |         |       |      | -    |      | <br> |      |      |      | <br> |      |
|     |     |         |       |      |      |      |      |      |      |      |      |      |
|     |     |         |       |      |      |      |      |      |      |      |      |      |

### 4.4 Comparison of variants

The differences between variants result mainly from the spatial distribution, structure and number of planned measures. The expert variant is characterized by a large number of diverse measures spread over a vast area (15 types and 11 groups of measures spread over 128 SPUs). On the contrary, the local variant contains only 9 types and 7 groups of measures placed in 33 SPUs. Despite these large differences, the assessment ratio of the final score of the expert to local variant is only 1.45 (0.71 / 0.49). Larger differences are noticeable after comparing the spatial distribution, which is shown in Fig. 5 as a difference between local and expert variants. The map shows that the local variant dominates in only 10 out of 128 SPU.

Calculations were also made for the reduced number of SPUs (the number was reduced by half, eliminating smaller units by including them in larger ones). As a result, the number of SPUs decreased from 227 to 113 (chapter 4.3). It is worth emphasizing that the surface of the SPU does not have a big impact on the result (the final grade has slightly decreased).

Additionally, by carrying out a visual comparison of both variants (Fig. 6) and the valorization map from FroGIS, it can be concluded that introducing the expert variant will reduce the need for water





retention in particularly sensitive areas. On the other hand, in the local variant, in most cases, it would improve areas with low water retention needs.



Fig. 6 Map of differences between local and expert variant (green color shows dominance of local variant and red shows the opposite)





Fig. 6 Visual comparison of variants' assessments with the map of valorisation of needs and water retention possibilities





# 5. CONCLUSIONS

- The tool is easy to use, however, preparing intensity for T1 polders, increasing the spaces between dikes T2 and reservoirs T3 is labour intensive and requires detailed data,
- Each new catchment requires verification / adjustment of parameters so that the intensity of planned measures does not exceed Tmax, which affects the final results,
- The catchment grade value is not highly influenced by the SPU surface area, however, its number is affected by the number of SPUs that have obtained grade 0,
- When comparing variants, use the same SPU layer so that the results correspond with each other,
- The tool cannot replace modelling or designing;
- It is recommended to compare the effectiveness assessment map with the map of needs and possibilities of small water retention development, because it allows to additionally assess whether measures are planned where they are needed,
- StaticTool.xlsm is a good solution to enable the estimation of the effects of the implementation of a program of natural, small water retention measures (PoNSWRM) in a simplified way, which does not require the time-consuming and costly development of detailed hydrological or/and hydraulic models of the analysed area (catchment).

# 6. REFERENCES

Pusłowska-Tyszewska D., 2019. StaticTool method and the StaticTool\_2020.xlsm application. INTERREG CE project Framwat manuscript.

Tyszewski S., Herbich P., Porretta Brandyk L., 2019. Elaboration and testing of the static tool along with personal participation in the project meeting in Cracov : 20-21 November 2019. INTERREG CE project Framwat manuscript.