

FORECASTING SYSTEM - ZUGLO

Deliverable D.T2.2.4

Version final 09/10/2020

Municipality of Zugló

László Szilágyi Tel.: +36 30 4413448 Email: <u>szilagyi.laszlo@zuglo.hu</u>

Description of the aims

Forecasting systems (1 per each city) able to announce the SAPEs, to categorize them (per different level of pollution) and to evaluate the realiability and effectiveness of provisional systems (linked to AWAIR-APP D.T2.2.7).

Table of contents

1. The air quality forecasting system in Budapest	3
2. The air quality index	6
3. Performance of the forecasting system in the Zugló FUA	7

1. The air quality forecasting system in Budapest

For the regional scale modelling the CHIMERE (2017 version) off-line chemical transport model (Mailler et al., 2017) was applied to simulate the transport and chemical transformations of air pollutants in the lower troposphere in Hungary. The model domain covered the greater Budapest area with a roughly 2.5 km (27×25 points) grid resolution. The vertical domain included 8 layers and extended to 500 mbar. The anthropogenic emission database compiled by the Hungarian Meteorological Service (2015) was used with a $0.05^{\circ} \times 0.05^{\circ}$ spatial resolution. Monthly emissions of the main pollutants were pre-processed in the CHIMERE suite to fit the simulation grid. The AROME numerical weather prediction model (Szintai et al., 2015) provided the gridded meteorological inputs for the chemical model calculations. The horizontal resolution of the AROME meteorological fields was consistent with the CHIMERE horizontal resolution. The initial conditions were coming from the previous model simulation. Global chemical fields from a reanalysis with the LMDz4-INCA3 model were used as boundary conditions for the model top and lateral borders.

Figure 1: CHIMERE model domain.

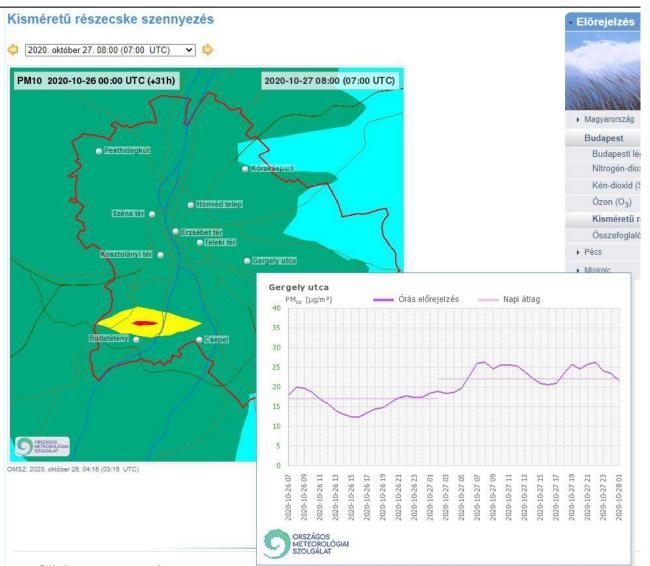
References:

Mailler S., L. Menut, D. Khvorostyanov, M. Valari, F. Couvidat, G. Siour, S. Turquety, R. Briant, P. Tuccella, B. Bessagnet, A. Colette, L. Letinois, and F. Meleux, CHIMERE-2017: from urban to hemispheric chemistry-transport modeling , Geosci. Model Dev., 10, 2397-2423, https://doi.org/10.5194/gmd-10-2397-2017.

Szintai, B., M. Szűcs, R. Randriamampianina, and L. Kullmann, 2015: Application of the AROME non-hydrostatic model at the Hungarian Meteorological Service: physical parameterizations and ensemble forecasting. Időjárás, 119, 241–265.

Name of the forecasting system	CHIMERE chemical transport model
Emission input	OMSZ (Hungarian Meteorological Service) emission database
Meteorological input	WRF/AROME
Spatial domain	Budapest
Spatial resolution	0.05° x 0.05° ~ 3,8 x 5,5 km
Type of output	Concentration maps, graphs and tables
Temporal domain of forecasts	36 hours
Postprocessing	HAWK (Hungarian Advanced WorKstation) workstation
Forecasted pollutants	PM10, SO2, NO2, O3
Metrics used for PM10	hourly mean/daily mean
Metrics used for PM2.5	-
Metrics used for NO2	hourly mean
Metrics used for O3	hourly mean/8-hours mean
Metrics used for SO2	hourly mean
Use of air quality index	no

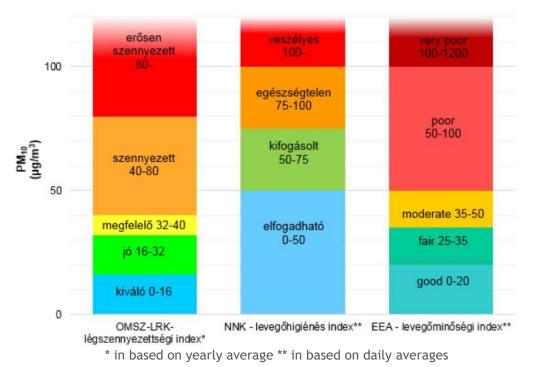
The model performes forecasting every early morning in parameters mentioned above.


The website of Hungarian Meteorological Service (OMSZ)

https://met.hu/levegokornyezet/varosi_legszennyezettseg/elorejelzes/budapest/no2/

shows the predicted air quality of 4 pollutants in a map of Budapest in 1 hour resolution. Pointing a location (which is one of an immission monitoring stations) the website shows a graph about the predicted air quality from the recent time to the end of the last computed forecasting period (see an example in the following picture).

In AWAIR project we ordered forecasting data for a location of Zugló (Bosnyák square) where unfortunately there is no monitoring station.



2. The air quality index

In Hungary officially there is no evaluation in Air Quality Index.

The OMSz and the National Healthcare Institute (NNK) use different color scale in evaluation of air quality:

Our goal in the the AWAIR project to achieve the general use of EEA AQI:

Pollutant	(based						
	Good	Fair	Moderate	Poor	Very poor	Extremely poor	
Particles less than 2.5 µm (PM _{2.5})	0-10	10-20	20-25	25-50	50-75	75-800	
Particles less than 10 µm (PM ₁₀)	0-20	20-40	40-50	50-100	100- 150	150-1200	
Nitrogen dioxide (NO ₂)	0-40	40-90	90-120	120- 230	230- 340	340-1000	
Ozone (O ₃)	0-50	50-100	100-130	130- 240	240- 380	380-800	
Sulphur dioxide (SO ₂)	0-100	100- 200	200-350	350- 500	500- 750	750-1250	

3. Performance of the forecasting system in the Zugló FUA

AWAIR partnership agreed in assessing the performance of the forecasting systems used in the three FUAs using a common set of indicators.

The specific set of indicators, in addition to Pearson correlation coefficient calculated between measured and forecasted concentration of PM_{10} , partners agreed on two selected sets of statistical indices. The first group includes Mean Error (ME, which corresponds to the bias), Mean Absolute Error (MAE), and Root Mean Square Error (RMSE) calculated with the following formulas (where predicted and observed daily values are indicated as P_i and O_i , respectively):

$$ME = \frac{1}{N} \sum_{i} (P_i - O_i)$$

$$MAE = \frac{1}{N} \sum_{i} |P_i - O_i|$$

$$RMSE = \sqrt{\frac{1}{N}\sum_{i}(P_i - O_i)^2}$$

The second group focuses on the performance of the forecasting system in predicting PM_{10} exceedances at different thresholds (50, 75 and 100 μ g/m³) and includes indices based on a contingency tables. The selected indices are Probability Of Detection (POD), False Alarm Ratio (FAR) and Threat Score (TS). Here below the definitions:

$$POD = \frac{A}{A+C}$$
$$FAR = \frac{B}{A+B}$$
$$TS = \frac{A}{A+B+C}$$

where "A", "B", "C" are the entries of the 2x2 contingency table and stand for the number of "hits" (events observed and predicted), "false alarms" (events predicted, but not observed) and "misses" (events observed, but not predicted) at each selected threshold.

Municipality of Zugló ordered an assessments about the model performance from the Hungarian Meteorological Service (who runs the CHIMERE model). They calculated the 6 statistical indicator (see above) and report in every 3 months.

The first performance assessment was based on period of July 2020 - October 2020.

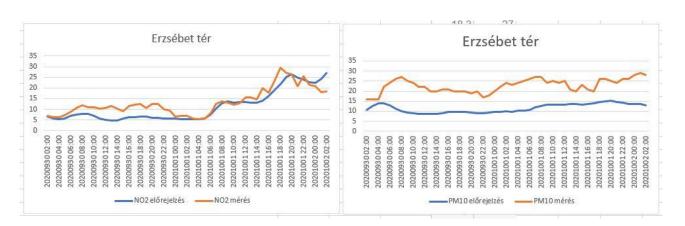
The script computes the BIAS, MAE and RMSE indices every day from the daily means of the predicted and the observed data, for example:

PM ₁₀ (daily mean)	station: Teleki tér				
date	O_DailyMean	P_DailyMean	BIAS	MAE	F
2020. 7. 9. 0:00	32,25	10,63	-21,6227	21,6227273	46
2020. 7. 10. 0:00	34,72	11,07	-23,6492	23,6491667	55
2020. 7. 11. 0:00	10,72	12,86	2,138333	2,1383333	4,5
2020. 7. 12. 0:00	13,32	15,21	1,888333	1,8883333	3,5
2020. 7. 13. 0:00	63,06	11,94	-51,1139	51,1138889	26
2020. 7. 14. 0:00	24,13	15,04	-9,08333	9,0833333	82,

etc.

O: observed; P: predicted

The average of indices of any kind of period can be calculated from the daily data:


The averages of the last 3 month:


PM ₁₀ (dail	y mean)
RMSE	20,8
BIAS	-14,9
MAE	15,7
NO ₂ (hourl	y mean)
RMSE	23,8
BIAS	-14,5
MAE	18,0
O₃ (hourly	/ mean)
RMSE	47,3
BIAS	27,2
MAE	40,6

Evaluation: In this period of the year we didn't have extreme events in the air quality. The CHIMERE model tends to underestimate in case of PM_{10} and NO_2 forecasting and overestimate in case of the O_3 prediction.

The second calculation focuses on the prediction of

- PM_{10} exceedances at different thresholds (50, 75 and 100 μ g/m³)
- NO₂ exceedances at different thresholds (100, 350 and 400 μ g/m³)
- O_3 exceedances at different thresholds (120, 180 and 240 μ g/m³)

and computes indices based on a contingency table. The indices are: probability of detection (POD), false alarm ratio (FAR), threat score (TS), and equitable threat score (ETS).

Contingency table								
Observation								
Forecasting	Yes	No						
Yes	A	В						
No	С	D						

- A correct alarm
- B false alarm
- C not predicted alarm
- D correct prediction

The event was predicted end happenned The event was predicted but not happenned The event was not predicted but happenned The event was not predicted and not happenned

Results of the last 3 months (station: Teleki tér)

PM ₁₀	50 μg/m³		50 μg/m³		NO ₂	100	µg/m³	_	O ₃	120
	Observ	ation			Observation				Obser	
Forecasting	Yes	No		Forecasting	Yes	No		Forecasting	Yes	
Yes	0	0		Yes	0	1		Yes	5	
No	6	74		No	19	1939		No	21	

 NO_2 (hourly mean above 100

O₃ (hourly mean above 120

μg/m³ rvation No

> 38 1873

Interreg	
CENTRAL EUROPE	European Union European Regional Development Fund
AWAIR	

µg/m³)				µg/m³)			µg/m³)		
	POD	HAMIS			POD	0		POD	0,2
	FAR	NaN			FAR	1		FAR	0,9
	TS	0			TS	0		TS	0,1
	ETS	0			ETS	0		ETS	0,1
DNA	76	μg/m³		NO₂	350	µg/m³	0	100	µg/m³
PM ₁₀		rvation				rvation	O ₃	180	vation
Forecasting	Yes	No		Forecasting	Yes	No	Forecasting	Yes	No
Yes	0			Yes	0		Yes	0	0
No	1	79		No	0	1959	No	0	1937
PM ₁₀ (daily mean above 75 μg/m³)			NO₂ (hourly r μg/m³)	nean ab	ove 350	O₃ (hourly mea µg/m³)	an above	180	
	POD	0			POD	NaN		POD	NaN
	FAR	NaN			FAR	NaN		FAR	NaN
	TS	0			TS	NaN		TS	NaN
	ETS	0			ETS	NaN		ETS	NaN
DA4	400	ug/m ³		NO	400	µg/m³	•	240	µg/m³
PM ₁₀		μg/m ³	1	NO2			O ₃	240	
		rvation				rvation			vation
Forecasting	Yes	No		Forecasting	Yes	No	Forecasting	Yes	No
Yes	0			Yes	0		Yes	0	0
No	0	80		No	0	1959	No	0	1937
PM ₁₀ (daily mean above 100 μg/m ³)			NO₂ (hourly r µg/m³)	nean ab	ove 400	O₃ (hourly mea µg/m³)	an above	240	
	POD	NaN			POD	NaN		POD	NaN
	FAR	NaN			FAR	NaN		FAR	NaN
	TS	NaN			TS	NaN		TS	NaN
	ETS	NaN			ETS	NaN		ETS	NaN

Evaluation: In this period of the year we hadn't many exceedances at different thresholds, we got only a few cases of alarm predictions (at the lowest level). In case of O_3 the results are not too promising (FAR=0,9; TS=0,1).

In our opinion much longer period is needed to evaluate the performance of the running model. Probably we'll get more informative general aspect after the winter season. We are going to refresh this report in February.