

INCREASED RENEWABLE ENERGY AND ENERGY EFFICIENCY BY INTEGRATING, COMBINING URBAN WASTEWATER AND WASTE MANAGEMENT SYSTEM

TAKING COOPERATION FORWARD

REEF 2W Final Conference

Mehdi Habibi, KWB Berlin

Pilot Site in Berlin Energy performance

Pilot Site in Berlin Energy performance

Table 2: Electric energy efficiency of the selected WWTP

Electric energy consumption		Standard range	
WWTP total [kWh/PE120/a]	23,27	20,00	50,00
1) inflow pumping station and mechanical pre-treatment [kWh/PE120/a]	1,05	2,50	5,50
2) mechanical-biological treatment [kWh/PE120/a]	17,60	14,50	33,00
3) sludge treatment [kWh/PE120/a]	3,50	2,00	7,00
4) infrastructure [kWh/PE120/a]	1,12	1,00	4,50

Table 3: Thermal energy efficiency of the selected WWTP

Thermal energy comsumption		Standard range	
WWTP total [kWh/PE120/a]	13,15	0,00	30,00
sludge heating [kWh/PE120/a]	10,42	8,00	12,00
transmission loss, digester tower heating [kWh/PE120/a]	0,54	0,00	4,00
generation, storage and distrivution loss [kWh/PE120/a]	1,10	0,00	2,00
heat for buildings [kWh/PE120/a]	1,09	0,00	2,00

Scenario	CHP	Biogas upgrading sys-	Electrolyser for PtG
		tem	
Status quo (I)	6 MW	0 m ³ /h biogas	$0 \mathrm{MW}$
Scenario II	$0 \mathrm{MW}$	1800 m ³ /h biogas	$0 \ \mathrm{MW}$
Scenario III	$0 \mathrm{MW}$	1800 m ³ /h biogas	7.8 MW

Results of Environmental Assessment for Berlin case study

Assessment of the Global Warming Potential with electricity mix of 2014

Assessment of the Global Warming Potential with electricity mix of 2030

7

Biogas upgrading and injection in the gas grid :

- At the moment: no reduction of GWP, better to produce electricity with CHP and substitute current power mix with high GWP
- In the future: it can decrease the GWP if green electricity is in the grid

Power to Gas:

• It can decrease the GWP (if PtG uses excess renewable electricity available in the grid)

Contact details

6	7/1/	2

Name : Mehdi Habibi Kompetenzzentrum Wasser Berlin gGmbH Project Acronym: REEF2W

- www.kompetenz-wasser.de
- Mehdi.habibi@kompetenz-wasser.de
 - Uff. +49 (0) 30 53653 820 Fax +49 (0) 30 53653 - 888

in linkedIn.com/MehdiHabibi

Reinhaltungsverband Trattnachtal Biogas Trattnachtal GmbH

