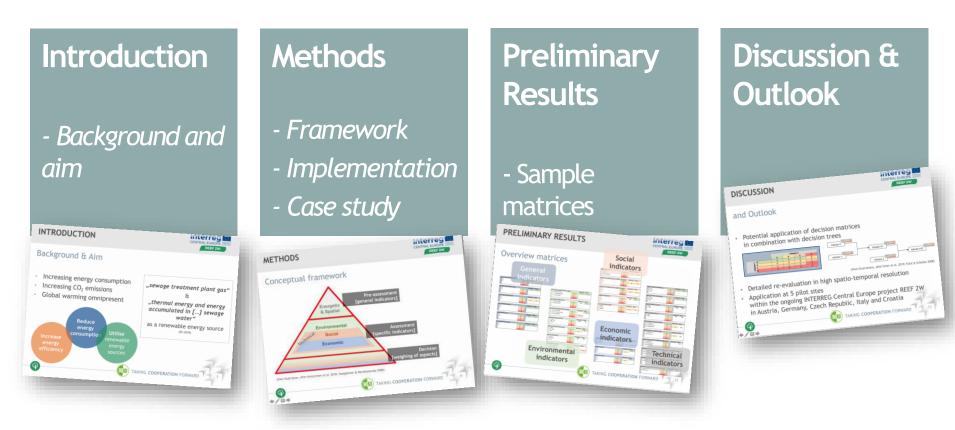


INCREASED RENEWABLE ENERGY AND ENERGY EFFICIENCY BY INTEGRATING, COMBINING URBAN WASTEWATER AND WASTE MANAGEMENT SYSTEM

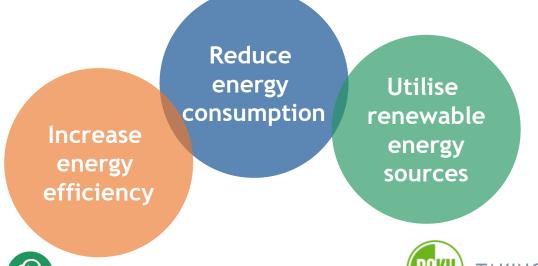
TAKING COOPERATION FORWARD


ECOMONDO - Nov 05, 2019 - Rimini

Integrated Sustainability Assessment of Wastewater based Energy Supply

BOKU: P. Lichtenwöhrer

CONTENT



INTRODUCTION

Background & Aim

- Increasing energy consumption
- Increasing CO₂ emissions
- Global warming omnipresent

"sewage treatment
plant gas"
لےلےپر thermal energy and
energy accumulated in
[...] sewage water"as a renewable energy
source

INTRODUCTION

CENTRAL EUROPE

REEF 2W

Background & Aim

- Different distribution paths for excess energy:
 - Upgraded biogas
 - Electricity
 - Thermal energy
- Multifaceted context and the coupling of energy sectors calls for a variety of different disciplines and a comprehensive approach
 - Sanitary Engineering and
 - Integrated Spatial and Energy Planning

INTERREG Central Europe project "REEF 2W - Increased renewable

energy and energy efficiency by integrating, combining and empowering urban wastewater <u>and organic</u> waste management

systems"

INTRODUCTION

Background & Aim

Aim

Development and application of an Integrated Sustainability Assessment (ISA) methodology. The practical decision support framework helps to identify the most sustainable solution for utilising excess energy from WWTPs.

Conceptual framework Pre-assessment [general indicators] Energetic & Spatial **Environmental** Technical Assessment Social [specific indicators] **Economic** Decision [weighing of aspects]

(Own illustration, after Kretschmer et al. 2018; Stoeglehner & Narodoslawsky 2008)

METHODS

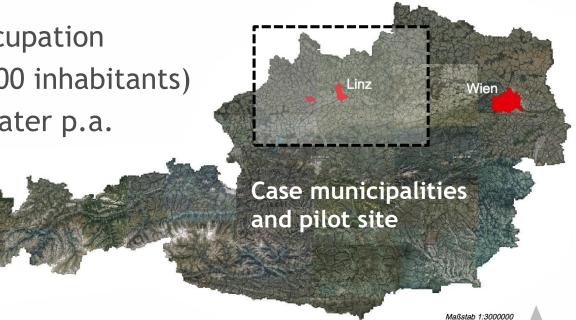
Implementation

- Indicator development
 - 6 general indicators
 - 26 specific indicators
- Up to 4 categories/graduations

Sample matrix:

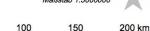
Indicator [X] Status Quo Future			Future		
	1		Α		Α
	2		В		
	3		С	С	
	4		D		

(Own illustration 2019 after Erker et al. 2019, Fürst & Scholles 2008)


TAKING COOPERATION FORWARD

METHODS

Implementation


- 74 000 PE capacity
- 50 000 PE average occupation
- 13 communities (32 500 inhabitants)
- 6 000 000 m³ waste water p.a.
- Co-fermentation
- Digester towers

TAKING COOPERATION FORWARD

Date: 14.05.2019

METHODS

Implementation

Excess energy:

Heat from sewage and co-fermentation gas

Electricity

Wastewater heat


JERBAND

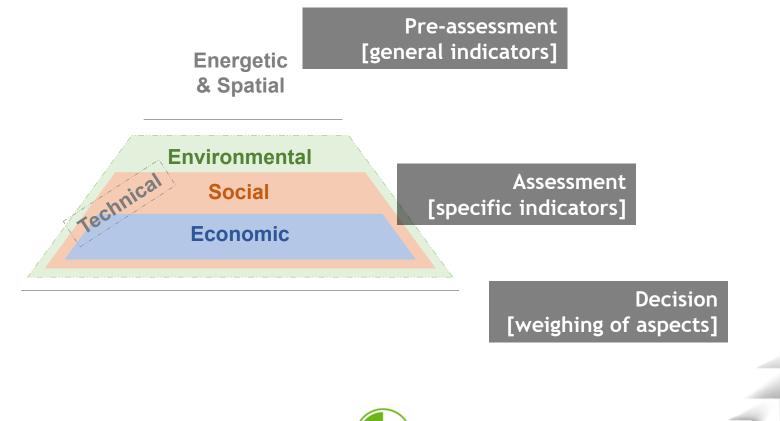
Reinhaltungsverband Trattnachtal Biogas Trattnachtal GmbH

Legende

- RHV-Trattnachtal and Biogas Trattnachtal GmbH
- Municipal Boundary
- River Trattnach

0_____50

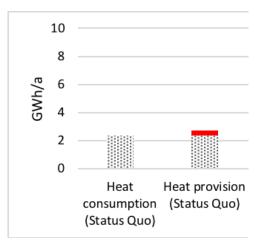
Date: 14.05.2019 Sources: basemap.at, © Statistik Austria, own editing

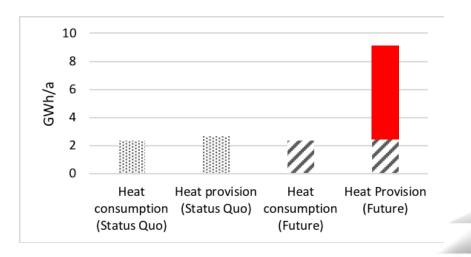


PRELIMINARY RESULTS

Sample matrices

PRELIMINARY RESULTS





Sample matrices

General indicator

Thermal excess energy from WWTP			Status Quo	Future	
	> 0	> 9 GWh/a	Α	Α	Α
	≤ 0		В		

PRELIMINARY RESULTS

REEF 2W

Overview matrices

General

Thermal excess energy provision	_	Status Quo	
> 0	A	A	А
≤ 0	В		
	с		
	D		
Excess digester gas provision		Status Quo	Future
> 0	A		
≤ 0	в	В	в
	с		
	D		
Excess electricity demand		Status Quo	Future
> 0	A	А	А
= 0	в		
	с		
	D		
Excess heat demand		Status Quo	Future
> 0	A	A	А
= 0	в		
	с		
	D		
Excess digester gas demand		Status Quo	Future
>0	A	А	А
= 0	в		
	с		

>0 ≤0

CO2 emissions reduction (electric energy)		Status Quo	Future
< 0.05 kg CO ₂ /kWh	Α	А	А
1.1 - 0.05 kg CO ₂ /kWh	В		
> 1.1 kg CO ₂ /kWh	с		
	D		
CO ₂ emissions reduction (gas)		Status Quo	Future
< 0.22 kg CO ₂ /kWh	Α	N/A	А
> 0.22 kg CO ₂ /kWh	в		
	с		
	D		
CO ₂ emissions reduction (thermal energy)		Status Quo	Future
< 0.12 kg CO ₂ /kWh	А	Linus quo	A
> 0.23 - 0.12 kg CO ₂ /kWh	B		~
> 0.23 kg CO ₂ /kWh	c	c	
> 0.23 kg CO2/kWII	D		
	-		
hare of renewable electricity		Status Quo	Future
hare of renewable electricity > 100 %	A	Status Quo N/A	
	A B		
> 100 %	B C		
> 100 % 100 - 40 %	В		
> 100 % 100 - 40 %	B C		N/#
> 100 % 100 - 40 % < 40 %	BC	N/A	N/#
> 100 % 100 - 40 % < 40 % hare of renewable thermal energy > 100 % 100 - 40 %	B C D A B	N/A	N/#
> 100 % 100 - 40 % < 40 % hare of renewable thermal energy > 100 %	B C D A B C	N/A Status Quo	N/#
> 100 % 100 - 40 % < 40 % hare of renewable thermal energy > 100 % 100 - 40 %	B C D A B	N/A Status Quo	N/#
> 100 % 100 - 40 % < 40 % hare of renewable thermal energy > 100 % 100 - 40 %	B C D A B C	N/A Status Quo	N/# Future A
> 100 % 100 - 40 % < 40 % share of renewable thermal energy > 100 % 100 - 40 % < 40 %	B C D A B C	N/A Status Quo B	N/# Future A Future
 100 % 100 % 40 % 40 % 100 % 100 % 40 % 40 % 	B C D A B C D	N/A Status Quo B Status Quo	N/# Future A Future
 100 % 100 40 % 40 % 40 % 100 - 40 % 40 % 40 % share of renewable gas > 100 % 	B C D C D	N/A Status Quo B Status Quo	N/# Future A

Environmental indicators

с

Social indicators Affordable energy

cheaper

> 0

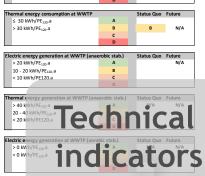
= 0

< 0

Energy costs > 0

= 0 < 0

в


c

Α

в

c

Degree of electric self-sufficiency		Status Quo	Future
> 75%	А	А	А
25 - 75%	в		
< 25%	с		
	D		
Degree of thermal self-sufficiency		Status Quo	Future
> 100%	А	A	Α
20 - 100%	в		
< 20%	с		
	D		
Degree of usable excess heat		Status Quo	
> 100%	A	N/A	N/A
< 100%	в		
	с		
	D		
Degree of usable excess gas		Status Quo	
> 100%	А	N/A	N/A
< 100%	в		
	с		
	D		
Electric energy consumption at WWTP		Status Quo	Future
< 20 kWh/PE ₁₂₀₋ a	А		
20 - 50 kWh/PE120-a	в	В	N/A
> 50 kWh/PE120.a	с		

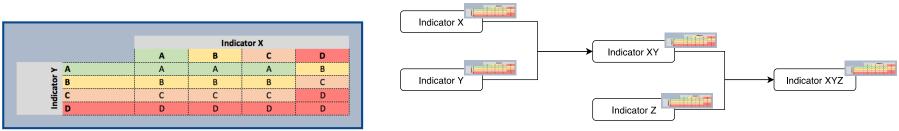
в

nermal energy generation at WWTP (aerobic stab.)

> 0 kWh/PE₁₂₀.a 0 kWh/PE120.a

TAKING COOPERATION FORWARD

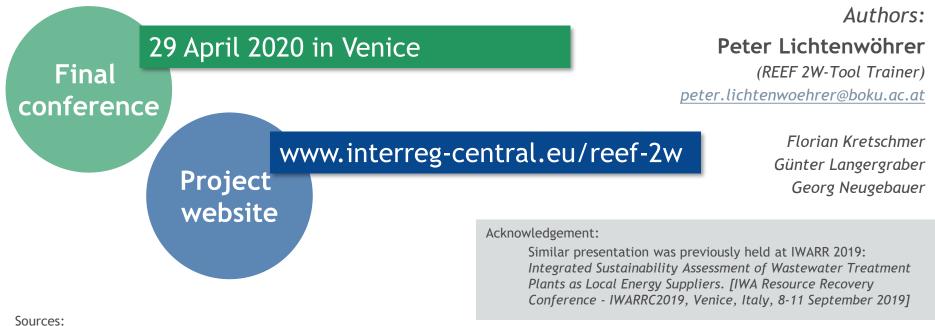
Status Quo Future


в

DISCUSSION

and Outlook

 Potential application of decision matrices in combination with decision trees


(Own illustrations, after Erker et al. 2019; Fürst & Scholles 2008)

- Detailed re-evaluation in high spatio-temporal resolution
- Application at 5 pilot sites within the ongoing INTERREG Central Europe project REEF 2W in Austria, Germany, Czech Republic, Italy and Croatia

THANK YOU!

Erker S, Lichtenwoehrer P, Zach F, Stoeglehner G (2019) Interdisciplinary decision support model for grid-bound heat supply systems in urban areas. Energ Sustain Soc 9:11. doi: 10.1186/s13705-019-0193-4

EU (2018) Directive 2018/2001 of the European Parliament and of the Council of 11 December 2018 on the

promotion of the use of energy from renewable sources. European Parliament and the Council, Brussels

Fürst D, Scholles F (2008) Handbuch Theorien und Methoden der Raum- und Umweltplanung, 3., vollst. überarb. Aufl. Rohn, Dortmund

Kretschmer F, Neugebauer G, Zach F, Loderer C, Farina R, Santi D, Jenicek P, Varga Z, Lichtenwoehrer P, Stoeglehner G, Langergraber G (2018) Heat Supply from Wastewater Treatment Plants - A Methodological Approach for Integrated Sustainability Assessment. Graz

Stoeglehner G, Narodoslawsky M (2008) Implementing ecological footprinting in decision-making processes. Land Use Policy 25:421-431. doi: 10.1016/j.landusepol.2007.10.002

Partners

Reinhaltungsverband Trattnachtal Biogas Trattnachtal GmbH

UNIVERSITY OF CHEMISTRY AND TECHNOLOGY PRAGUE

